Semprola: A Semiotic Programming Language

Oli Sharpe
Go Meta
Brighton, UK
oli@gometa.co.uk
semprola.org

ABSTRACT

Most people interested in developing new programming languages
or programming environments are looking at how to improve the
syntax and semantics of the program text or at tools that help make
programmers more productive at crafting the program text. What
we need is a more fundamental change to the conception of what a
program is. This paper introduces a new, Semiotic Programming
environment in which we program with signs in a context, rather
than with symbols in a text file and where we treat dialogue rather
than functions as the dominant organising principle of our code.
All of the information held in this environment is managed in a dis-
tributed, semiotic graph that is organized into multiple ontological
spaces. Taken together these enable our programs and data to have
greater semantic depth. Finally the paper gives a brief introduction
to Semprola, a Semiotic Programming Language that can be used
in this Semiotic Programming environment.

CCS CONCEPTS

» Theory of computation — Program semantics; Models of
computation; « Software and its engineering — General pro-
gramming languages; Semantics; Syntax; Runtime environments;

KEYWORDS

Compile time semantics; computational referent; context; dialogue;
distributed graph; messaging; multiple ontologies; nodedge; pro-
gramming languages; referent; semantic depth; semantics; semiotic
programming; semiotics; semprola; sign; signified; signifier; spuid
ACM Reference Format:

Oli Sharpe. 2018. Semprola: A Semiotic Programming Language. In Proceed-
ings of 2nd International Conference on the Art, Science, and Engineering of

Programming (Author version <Programming’18> Companion). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3191697.3214330

1 INTRODUCTION

When we program we enter into a kind of dialogue between our-
selves, our computers and other users. This dialogue involves the
use of words and symbols that have particular meanings. Semiotics
[1, 8] is the study of such systems of meaning and it uses the term
“sign” to refer to the combination of a particular word or symbol
with its meaning in a particular context. This paper will argue that
the traditional conception of programming focuses incorrectly on
the manipulation of symbols rather than on the manipulation of
signs. The traditional focus on symbols relies upon the assertion

that the meaning of these symbols and words remains fixed over
time and space for all users. This may have been a reasonable simpli-
fication to make in the tight nit communities involved in the early
decades of the development of programming, but it has become a
hindrance to our effective use of computers in the 21st century.

To rectify this we need to bring signs, context and dialogue to
the forefront of our conception of programming and thereby update
our ideas about what a program is. Semprola is a new programming
language in a Semiotic Programming environment that has been
designed to do this.

1.1 A Common Heritage

To illustrate just how much of today’s thinking about program-
ming comes from nearly 50 years ago it’s useful to briefly mention
some of this history. By the early 1970s many important explicit'
programming paradigms had had their earliest incarnations, such
as: functional programming (LISP late 1950s), structured program-
ming (ALGOL late 1950s and C developed in 1972), declarative
programming (SEQUEL/SQL 1974), relational databases (again with
SEQUEL/SQL 1974), and object-oriented programming (Simula late
1960s and Smalltalk early 1970s). Indeed, many of the ideas imple-
mented in the early 1970s were germinating before then and were
implemented by programmers who developed their thinking about
computers in the 1950s and 1960s.

Before 1970 computers were big, expensive, mostly isolated de-
vices that by our standards were extremely slow and had very little
internal memory. External storage was even slower. Also of signif-
icance was that computers were very exclusive devices available
only to the richest institutions in the richest countries. Very few
individuals would have owned a computer. The majority of pro-
grammers and users of computers probably spoke English as their
first language.

In this context, it is not surprising that programming was con-
ceived of as something that you could do with pen and paper (away
from the expensive, shared computer) writing in a simple syntax
using English terms. This choice was not only practical, but also
followed on naturally from the disciplines of mathematics and logic
that gave rise to the computer.

Today computers are cheap, tiny, fast, ubiquitous and they not
only have a network connection, but they are regularly being used
in some relation to other networked computers. The majority of peo-
ple across the world own at least one personal computer (their mo-
bile phone) and many own multiple computers and indeed change

Author version

<Programming’18> Companion, April 9-12, 2018, Nice, France
2018. ACM ISBN 978-1-4503-5513-1/18/04...$15.00
https://doi.org/10.1145/3191697.3214330

!t is important to note that this paper is focused on explicit forms of programming
rather than implicit methods of creating a “program” from training data such as neural
networks or machine learning (although these too have their origins in the 1950s and
1960s).

https://doi.org/10.1145/3191697.3214330
https://doi.org/10.1145/3191697.3214330

Author version
<Programming’18> Companion, April 9-12, 2018, Nice, France

their computational devices regularly. The majority of users of com-
puters today (and probably programmers too) do not speak English
as their first language and indeed billions of users will not speak
any English at all. Many programmers would rarely write anything
without using a computer, let alone program without a computer.

And yet some of the most widely used programming languages
in 2017 and 2018 were: Java, C (still!), C++, C#, Python, JavaScript,
Ruby, R, Go and Scala [7, 9] all of which have significant intellectual
heritage from the way people were thinking about programming
in those early decades of programming. In particular, all of these
languages can be programmed by writing plaintext files of syntac-
tically structured text with English keywords using a simple text
editor like Notepad or Vim.

Of course we have tools to make the task easier, but static text
on a bit of electronic paper is still essentially what a program is
seen to be. This “pen and paper” conception of programming is
deeply connected to the idea that programs and computers are
just about symbols and symbol manipulation and it is up to the
programmer to take care of the semantics. Even tools that use the
abstract syntax tree (AST) as the definitive program source (such
as MPS by JetBrains [3]) still maintain essentially the same compile
time relation between the symbolic text input by the programmer
and the implied semantics. It is this, rather than the use of text files
per se, that is the deeper problem that needs to be addressed.

2 WHAT’S THE PROBLEM?

From a certain perspective the IT industry is very successful, so
that may seem to suggest that there is no problem with the way that
we currently conceive of programming. But there are still many IT
projects that fail expensively in one way or another, and the suspi-
cion explored in this paper is that the philosophical choices buried
deep into our existing programming languages make it harder for
complex IT projects to succeed.

There has also been a seeming failure of programming to be-
come a society wide empowering skill in the way that literacy has
done before. It should be that everyone is both a user and pro-
grammer of the systems in their lives, but this isn’t happening. The
exclusivity of programming today may have some link to the sim-
plifying assumptions that made sense and worked in the exclusive
environment of being a programmer in the 1960s.

So, let’s take a look at the most problematic aspects of this con-
ceptual heritage.

2.1 Let’s Assume There’s Just One Ontology

The most significant of these choices is the idea that there could
exist a single, perfect, agreed ontological structuring of the world
that can then be ingested into the data structures and databases of
our computers. This is not just a pedantic philosophical quibble, it
has significant real world implications. The most obvious of these
is the “one big bucket” fallacy that bedevils many large IT projects.

When two or more departments or organisations have to share
structured information there is always a reluctance to acknowledge
that the two entities may have legitimate reasons for having a
different ontological structuring of the things in the world that they
engage with. Instead, there is often an insistence to establish “one

Oli Sharpe

version of the truth” preferably by pooling all of the relevant data
into one “master” database, one central, structured bucket.

This philosophically naive approach only works in relatively
simple situations (maybe a few thousand people within a particular
organization doing similar kinds of work). In the 1960s and 1970s
this kind of “simple situation” would have been a huge project
so it was plausible to build the languages and databases on the
basis that the one ontology assumption would always hold true.
Today we want to be able to use computers to share information
between multiple systems in multiple countries using multiple lan-
guages in differing cultures and this obviously will involve multiple
ontologies.

Faced with the complexities and costs of this reality many projects
fall back on another “one big bucket” solution, which is to assume
that we can create one big unstructured bucket and let AI and
search find anything we want. But this neglects the very real need
for some processes (business or personal) to be near perfect in their
functioning. If you login to a system to find someone’s medical
records, you don’t want a search page of possible matches!

We often need our computers to work with highly structured
information in a way that is as correct as humanly possible. This
structuring is precisely what an ontology provides. Yes, we might
use Al to help create and maintain and connect such ontologies,
but the resulting ontologies need to be explicit. We can then share
structured information between these systems as accurately as is

possible.

2.2 Compile Time Semantics

Another traditional choice is to view a program as an isolated math-
ematical or otherwise formal construct whose semantics is mostly
determined at compile time in reference to itself and its imported
libraries. And it makes a lot of sense that we’ve inherited this view
given the history of programming, but today many “programs” are
really just small parts of a greater, “living” network of programs and
services that are each being updated at their own pace. Therefore
there is no single moment of compilation and the semantics of one
part in relation to the whole can be updated even if that part isn’t
being changed.

Indeed, the information that we create with our programs often
has a much longer lifecycle than the individual programs we use to
interact with that information at any one moment in time. Therefore
some key semantics should be held with the information itself
rather than being stuck in the source code of the programs only to
be stripped away at compile time.

There is also now general agreement that it is practically im-
possible for any codebase to be completely bug free. It’s not that
we should revel in creating “big balls of string”?, but rather that it
would be more accurate for our conception of programming to rec-
ognize that we often “evolve” our programs using practical testing
methods (whether automated or human) to ensure that the program
is working sufficiently well at any given moment in time [4]. The
agile methodology of project management is very popular today
precisely because it acknowledges this reality of contemporary
programming.

2This phrase is used to characterise codebases that have organically grown into an
unwieldy mess.

Semprola: A Semiotic Programming Language

2.3 Naked Data — Quantities Without Units

Another pervasive choice within programming is to store quantities
without their units. This choice to store data “naked” of all semantics
partly derives from having a single ontology (as in, “we all use the
metric system here”) and it also relates to compile time semantics®.
While this concern applies to the semantics of other types of stored
information as well, the use of naked scalars, vectors and matrices
for quantities is particularly noticeable and probably has a strong
link to the mathematical origins of computing.

When performing manual calculations we rarely use different
units for different quantities of the same measure. We typically first
convert all of the data into, say, the metric system and then just work
with the scalar, vector or matrix values. This assumption that we
can just work with the numerical values has understandably crept
into the heart of our programming languages and database designs
from the earliest days and we’ve simply stuck with it. But there is
no particular reason why we ought to continue with this choice,
especially as it literally has real world impact. The Mars Climate
Orbiter crashed precisely because a value in pounds-seconds was
taken to be a value in newton-seconds [10]. Programmers shouldn’t
have to take care to align such trivial semantic considerations when
computers would be ideal at doing it.

2.4 Functions as the Organising Unit of Code

Computing has a tight historical association with functions that
goes back to the original theoretical roots of computation. Func-
tions are central to the conception of both Turing machines and
lambda calculus. However, despite this historical prominence, func-
tions naturally suffer from all of the concerns raised above. Pure
functions are traditionally thought of as being immediate, context
free processors of semantically naked input values into a naked
output value with no side effects. As such pure functions are very
much in tune with the rest of the “pen and paper” conception of
programming and, especially since the advent of structured pro-
gramming in the late 1950s, their mathematical nature has been
very useful for the theory and indeed practice of programming ever
since.

However, today we need to do computing that is context aware,
semantically rich and that regularly will involve interactions with
remote processes. This last point in particular means that most
programming today ought to be gracefully dealing with latency
between the “call” and “return” of many bits of code. Of course
functional programming can be written to handle latency, and
patterns for non-blocking structured code are commonly used, but
it is not the natural way to think about and use functions and
methods. And for many running processes it would be useful to be
able to pause it, resume it, interrogate it for updates, and sometimes
to provide updated input values to the process. For handling latency
and the kinds of interactive scenarios just listed, it would be more
useful to organize some bits of code using branching, interrupt
driven “dialogue” as the organising principle rather than insisting
that all code is in a function.

3Compile time type checking is sometimes used to check that the units of quantities
are compatible, but this keeps the semantics with the program not the data.

Author version
<Programming’18> Companion, April 9-12, 2018, Nice, France

2.5 Other Choices to Mention

There are also a number of other choices to briefly mention that are
baked deep into the historical heritage and so are nearly universal.
In particular: a program exists in the memory of one computer;
state changes are only persisted by explicit additional code; network
interactions are not a first order feature of the languages; and
the program has no native notion of the context in which it was
programmed. So, just like the data, the program itself is “naked”,
kept apart from this important source of its semantics.

So how should we be thinking about programming? And what
kind of programming should be easier to do than it is now?

2.6 Viv Programming Her Life

Figure 1 shows six different work spaces each of which is “owned”
by a different person or group of people involved in Viv’s life. Viv
is a 15 year old who enjoys Bob Dylan music and programming.
She goes to a French speaking school, occasionally has to go to a
local doctor’s clinic and has a best friend Jane. Each space has its
own way of naming and organising the things that are important to
that person or group: its own ontology. For example, Viv’s parents
still like to use the imperial system of weights and measures. What
we can see in each space is the set of properties that each space
sees about Viv. The colour of each property shows which of the
different spaces is responsible for setting that property.

As should be clear, none of the spaces is the “master” space,
but each connects to the others as peers that have differing per-
missions to view and change different properties relating to Viv.
This is a simplified example of how we live our lives and the way
that we would naturally want to connect our computer systems
to share information. It’s unlikely that all of these systems will be
using the same technology. And the expectation should be that Viv
might change doctor’s clinic or join a community football team, or
whatever. So the group of spaces that we want to connect together
will always be evolving and each of us will have a fairly unique
collection of different systems and technologies around our lives.

This kind of scenario should be the default use case that is easy
to do naturally in at least one of our popular programming lan-
guages, but it certainly isn’t. Semprola’s goal is to not only make
this information sharing scenario natural to setup but it should also
be fairly easy to write applications within a space that helps the
users of that space work with their kind of information.

For the doctor’s space this might be the application that helps
run the clinic and links the information they use locally with some
national health system. For Viv it would enable her, for example,
to write programs to organize her music collection and find music
that her friends are listening to that she either doesn’t know or
that she hasn’t listened to recently. It should also be relatively easy
to connect your system using one technology to another system
using another technology.

Anyone who has worked on an enterprise IT project with the
requirement to share structured data between organisations will
know that this kind of programming is currently hard and expensive.
It shouldn’t be. It should be the kind of programming that a 15 year
old school girl can play around with to empower her in her world.

Author version
<Programming’18> Companion, April 9-12, 2018, Nice, France

Oli Sharpe

Viv's Space)
e iy, 5 Famlly Space
\\\\ ,//// N |||||||||||||||||||||||||||||"l[I,
S %, o m,
~ -~ 7
s z & 2
£ First Name —» Vivienne 2 5 Z
£ Surname —» Smith = = ; i E
; Doctor's Space s Nickname — Viv £ £ FgSt Name g \S/'V'? r? ne :
(b iy g Music — Bob Dylan E = >urhame mit g
\\\\\\“ ", = o tBirth —> 1% Feb g £ Nickname — Viv 5
$ 2 z ate o |(t 1' Fe. 2003 s £ Music — Bob Dylan g
: = £ email = viv@viveom | = = Date of Birth = 1% Feb 2003 :
z First Name —> Vivienne : £ Mobile -~ 0777888111 E = email = viv@viv.com :
z Surname — Smith S £ | Mahsscore = 92% E E Mobile —» 0777888111 E
[Preferred Name — Viv = = Homework — Programming E = Maths score —» 92% =
g Date of Birth —» 1/2/2003 = £ _ Weight = 54.5kg g E Homework —» Programming £
z Contact = Parents = £ ((::I|]'m'c \il-lvelgr?tt _': i§-917kg £ S Weight = 117 pounds =
= | Home weight = 54.5kg = 3 | e Lem & £ | Clinic weight = 115 pounds E
H] . 2 S = - . . s
E m':elgr;]tt e i§917kg A g I\\\\\\M/%// CIInlC Helght 629 lnChes §
E] eight = 159.7 cm 3
E// g ,/IIII"““ LU R T |||||||||||||||||||l\\\\\\\\\
//////1
Vi i,
\\\\\\\\\l o iy Q\\\“ 'll/,,%
N] - £ 2 = Name —» Viv E
E = . . s = =
z Nom depfr::,(ﬂfg e \S/x',f,? " | Name = VivSmith | £ = | FyIName —» VivSmith £
£ Surnom — Viv = Age = 15 years old £ £ Music — Bob Dylan E
z Date de naissance —» 1/2/2003 = | Music = Bob Dylan E Age —> 15 years old z
E E E S email = viv@viv.com | Z
E Le deviorafaire’chez_ soi —» La programmation = 2, § Z Mobile = 0777888111 g
Z Score mathématique — 92% H .) s 5
£ E Public Profile £ £
K o \ S /”’///,,, “ ~
Teacher's Space at French School Best Friend's Space

Figure 1: Like all of us, Viv’s life is composed of multiple ontological spaces constructed by different people.

2.7 Thinking Beyond Symbol Manipulation

But, even with all of this complexity aren’t computers still just
symbol manipulators? Well, at the most basic level an individual
instruction step within an executing computer is just a manipulation
of symbols, but when we are programming we are doing more than
just giving instructions for symbol manipulation. We are expressing
meaning and intention as well. And with computers increasingly
embodied in our material world the manipulation of symbols that
they perform is not just abstract, but has meaningful, direct impact
on the world. We should therefore be working with paradigms
of programming that explicitly recognise the more sophisticated
semantics of how we interact with computers today.

This is exactly what Semiotic Programming (SP) attempts to do.

However, before looking at SP, let’s just take a brief look at what
semiotics is.

3 SEMIOTICS

The study of signs, that is now known as semiotics [1, 8], is generally
seen to have been founded independently by two separate figures,
Ferdinand de Saussure (1857-1913) and Charles Sanders Peirce (1839-
1914), each of whom had slightly different conceptions of what a
“sign” is composed of. There isn’t room here to explore semiotics
in depth, but it is useful to take a brief look at how each of the two
founding figures understood signs, because Semiotic Programming
takes another slight variation from both of their conceptions.

3.1 The Saussurean Sign

For Saussure the sign is composed of two parts: the “signifier” and
the “signified” and is usually depicted as in figure 2. The signifier is
the written text or spoken word that represents the concept but has
no meaning in and of itself, such as the text of the word “Tree”. The
signified is the concept being thought about, so in this case when
we read or wrote the word “Tree” we might have been thinking
about a particular tree in the park outside our house (as depicted
in figure 3). The sign is the linking of these two and the process of
linking is what Saussure was interested in studying.

Semprola: A Semiotic Programming Language

Sign
Signified

Signifier

Figure 2: The basic Saussurean sign.

However, Saussure thought that we had to “bracket the referent”,
that is we have to exclude from our formalisations the actual thing
in the world which we are thinking and talking about: the actual
tree in the park (depicted outside of the sign in figure 3). This is
because we can only talk about the thing itself by using other signs.
In this sense we can never escape our “system of signs”.

Sign

Figure 3: A Saussurean sign when writing about a tree®.

Another key insight from Saussure was that signs have no in-
trinsic meaning. Signs only gain their meaning in relation to other
signs in a “system of signs”. Saussure likened this to the way that
the pieces in chess only gain their importance through their rela-
tionships to the other pieces on the board rather than from any
intrinsic value derived from their material construction. If the play-
ers agreed they could swap the wooden, white queen piece for a
red pen lid and continue playing chess as before with their new
“white queen”.

Also of relevance to this paper is the example used by Saussure
of how the French word “mouton” does not always translate into
the English word “sheep” because in English there is also a separate
word “mutton” to refer to the meat of sheep [1]. Different ontologies
rarely map onto each other in a simple one to one correspondence.

3.2 The Peircean Sign

For Peirce the sign is composed of three parts: the “representamen”,
the “interpretant” and the “object” (see figure 4). A very simple
interpretation of the Peircean sign in comparison to Saussure’s sign
is that the “representamen” is equivalent to Saussure’s “signifier”,
the “interpretant” is equivalent to the “signified” and then Peirce
brings the referent into the sign as the “object”.

So, looking again at the example of the word “Tree” when think-
ing about the particular tree in the park we could depict the Peircean
sign as in figure 5 (where, of course, the picture on the right of
the tree is itself a sign standing in as our way to refer to the real

4The original photo of the tree is ©Kevan Craft under CCO Creative Commons license
from https://pixabay.com/en/tree-oak-landscape-view-field-402953/ on 6th May 2018.

Author version
<Programming’18> Companion, April 9-12, 2018, Nice, France

Sign

Interpretant Object

Representamen

Figure 4: The basic Peircean sign.

tree, which lends weight to Saussure’s point about how hard it is
to escape our use of signs to refer to things).

Sign

Figure 5: A Peircean sign when writing about a tree.

3.3 Semiotics of Programming

There has been some application of semiotics to study the meaning
of the text used in the traditional conception of programming. It is
worth taking a very brief look at an example of this from the book,
“Semiotics of Programming” by Kumiko Tanaka-Ishii (2010) [8].
In chapter 6 Tanaka-Ishii takes a detailed look at some of the
semiotics in simple programming statements like x := x + 1 and
int x = 32.In the first of these statements the two uses of x
have different meanings. In the second statement we’re connecting
three different bits of information to say that we’re going to use the
identifier x to refer to a memory address in which we are going to
store values that are integers and that to begin with we are going
to store the literal value 32 as an integer at that memory address.
The book explores many interesting aspects of the semiotics of
the text used in the traditional conception of programming, but at
no point does it question this symbolic “pen and paper” conception.

4 SEMIOTIC PROGRAMMING (SP)

Semiotic Programming (SP from now on) is an attempt to develop
a new conception of programming by placing a computational
system of signs, rather than syntactic symbols at the heart of the
programming environment. The system of signs consists of an SP
model of the sign together with a distributed graph structure used
to organize the multiple ontological contexts of this system of signs.
Then a dialogue of messages is passed between the elements of the
system to invoke behaviours. This computational system of signs is
animated by the Semiotic Programming Virtual Machine (SPVM).

In this system, traditional symbolic data is used to construct signi-
fiers that need to be interpreted within a given context to reveal the
appropriately meaningful sign. This insistence on always having an

https://pixabay.com/en/tree-oak-landscape-view-field-402953/

Author version
<Programming’18> Companion, April 9-12, 2018, Nice, France

interpretative semantic context requires the programming environ-
ment to be more personal (in order to know the context) and also
more naturally ready to handle multiple ontological perspectives.

4.1 The Semiotic Programming Sign

SP draws influence from both Saussure and Peirce to arrive at a
novel SP model of the sign that is composed of four parts: the
“signifier” (the computational representation that stands in for the
concept of the thing), the “signified” (the concept of the thing), the
“referent” (the thing itself) and the “computational referent” (the
computational representation of the thing). These are depicted as

in figure 6.
SP Sign
Signified Referent
- Computational
Signifier Referent

Figure 6: The basic Semiotic Programming sign.

Then, in a similar move to Saussure’s notion of “bracketing
the referent”, in Semiotic Programming we will instead “bracket
the unconnected” where the “unconnected” consists of anything
which cannot engage directly in electronic messaging with other
connected computational devices. However, similar to Peirce we
will still include these unconnected elements in our conception of
the totality of the SP sign even if there is usually less that we can
say about them.

SP Sign

gt

Unconnected

S

Connected

Figure 7: Programming about a tree in the park.

So, to revisit our example of the word “Tree” in the context of an
SP sign we might have a text string “Tree” which is being used in a
particular context to refer to a computational object with properties
and behaviours that are meant to represent the particular tree in
the park (see figure 7). The string signifier and the computational
object are things that we can actually implement and manipulate
(directly) with our computers and so are seen to be part of the
connected world.

In contrast, the signified concept of the tree is what the program-
mer was thinking about when she typed “Tree” and the referent
is the actual tree in the park that she was thinking about. Usually
there is nothing we can do within the computational, connected
world to directly affect either the signified or the referent, which is
why we will typically “bracket the unconnected”.

Oli Sharpe

It’s worth noting here that as well as being able to implement
the signifier and the computational referent, we can also create a
partial implementation of the SP sign itself that involves only the
connected aspects.

Note too that our attempt to model or represent the real tree
within our program is precisely the role of the data structure that
is the computational referent. So, the computational referent repre-
sents some aspects of the referent. The signified is the concept en-
gaged when we are doing some programming and we are thinking
about the referent and the computational referent that represents
it. The signifier is the data structure that we use to stand in for this
concept in our program. We can then use the signifier in order to
refer to the computational referent and through this proxy refer to
the actual referent. These relationships are depicted in figure 8.

Signified I8 Referent

thinking .
about

refers by represents
proxy to P ‘

/ 1
"Tree" —erers —

standsl in for

Computational
Referent

Signifier
Figure 8: How the parts of the SP sign relate to each other.

4.2 Purely Computational Referents

There will be times when the thing itself being referred to is actually
a computational object. For example, in another situation we might
be using the text string “Tree” to refer to a branching data structure
in our program. In this case there is no thing in the unconnected
world being referred to as the computational referent is also the
actual referent of the sign (see figure 9).

SP Sign

Unconnected

Connected

Figure 9: Programming about a tree data structure.

4.3 Internet of Things

Another variation arises because of the increasing number of ma-
terial things in the world that have a meaningful computational
component of what they are that is connected to the internet. This
trend is often referred to as the “internet of things”. It means that
many of our material things, for example your car, will be able to
send and receive messages from your other computational devices.

Semprola: A Semiotic Programming Language

SP Sign

Unconnected

Connected

Figure 10: Programming about my connected car.

This example, as depicted in figure 10, is slightly different from
the previous example because we are still partly using the address-
able computational element of the car to act as a proxy for the
whole material object. However, the more that the computational
element becomes indispensable to the essence of the whole car, the
closer it is that the computational referent can meaningfully stand
in for the whole referent.

It is also conceivable that artificial intelligence (AI) will one day
progress to the point where it would be meaningful to talk about a
cognising Al that is connected and thereby there may be situations
where even the signified concept is connected to the computational
world. So, while “bracketing the unconnected” will typically exclude
the signified and the referent from being included in the implemen-
tation of the SP sign, we include them in the conception of the SP
sign as they could, in theory, be computationally connected in some
circumstances.

The next part of the system of signs to examine is the SP graph,
but before we can do that we first need to look at the construction
of the SP signifier.

4.4 SP Signifiers, SPUIDs and Semantic Depth

In the examples up until now we have been imagining the signi-
fier as a simple text string such as “Tree”. However an important
aspect of SP is to recognize that the signifier can be a much more
complex computational object. Just like footnotes (or indeed hy-
pertext links) the purpose of using a more complex signifier is to
help any interpreter correctly arrive at the intended meaning of the
signifier in the given context. This additional information held by
the SP signifier therefore helps the resulting SP sign have greater
“semantic depth”.

If we take the two different examples that used the text string
“Tree” we might find that the signifier for the tree in the park
could be depicted as in figure 11. Whereas the signifier for the
computational tree data structure could be depicted as in figure 12.

Concept SPUID: 3/9/61
Original textual signifier
Author Context SPUID:

text : "Tree"
language : English
author : Peter

123/456/789

Figure 11: Cold SP signifier for the tree in the park.

Note that these two SP signifiers refer to different concept iden-
tities (SPUIDs will be introduced in the next section). The rela-
tionships linking concept SPUIDs to computational referents will
be held by the different ontological spaces and it is only when a

Author version
<Programming’18> Companion, April 9-12, 2018, Nice, France

conceptual SP signifier is interpreted within the context of such a
space that the correct computational referent can be determined.
By saving the author time context with the signifier this gives the
SP environment at the very least a default context within which to
look for an appropriate computational referent for this signifier if
it cannot find the given concept SPUID within the current context.

Concept SPUID: 15/43/234/834 text : "Tree"
Original textual signifier language : English
Author Context SPUID: 123/456/789 author : Peter

Figure 12: Cold SP signifier for the tree data structure.

The SP signifiers as depicted in figures 11 and 12 are called “cold”
signifiers in that they can be persisted in an inactive state. Indeed,
while an SP signifier can be a compound signifier (constructed out
of multiple other signifiers, like bits of text or unique identifiers),
the whole signifier can be serialized into a single, symbolic data
format that is ultimately constructed out of “Semiotic Programming
Unique Identifiers”, (SPUIDs).

SPUIDs are used to create a unique identity for all elements of
the SP graph and all SPUIDs are considered potential addresses to
which messages could be sent. These are globally unique, logical
addresses (like an IP address) rather than machine specific physical
addresses (like a MAC address).

SPUIDs can be persisted in text format as a series of whole num-
bers separated by the “/” character, for example “3/543/321”. And,
just like with IP addresses, the only purpose of this minimal struc-
ture within the SPUID is to ensure a globally unique, addressable
enumeration of all things within the SP graph.

Therefore, unlike human readable URL web addresses, the SPUIDs
themselves should not contain any semantic information about
what they refer to. Specific SPUIDs can have a specific, known
meaning (in the way that UNICODE code point U+0053 refers to
the Latin alphabet upper case “S”) but this link should be arbitrary”.

So, a SPUID is a logical address to another part of the SP graph
and an SP signifier is constructed out of either a single SPUID or a
collection of SPUIDs structured in a particular way® to constitute a
more sophisticated logical address.

And, while these persisted cold SP signifiers are “pen and paper”
in the sense that they could be easily written down without loss
of information on a piece of paper, they are not human friendly!
Indeed, all of the property names listed above (such as “Concept
SPUID”) would actually be represented in the SP signifier by the
SPUID that represents that concept.

4.5 Nodedges and the SP Graph

All information held within SP is thought of as being part of a
single, distributed “SP graph”. This graph is constructed out of
a universal building block called a “nodedge” that, as the name
suggests, forms both the nodes and the edges of the SP graph. All
nodedges comprise of the same three parts: a uniquely identifying

>The most notable exception is for the SPUIDs that refer to a few basic enumerations
of number sets such as the natural numbers.
®These compound SP signifiers are constructed out of nodedges (see section 4.5).

Author version
<Programming’18> Companion, April 9-12, 2018, Nice, France

SPUID; a key/value map; and a list’. In the cold, persisted state the
map and the list hold only cold SP signifiers. So, if we depict a cold
SP signifier as a piece of text in a blue box, then an example cold
nodedge could be depicted as in figure 13.

SPUID: 243/32/43
[
—

Tim Walters N
N\) Map

Figure 13: A cold nodedge is made out of cold SP signifiers.

-{ Ontological Space }—>| Viv's Space |

Behaviour

Last Modified

As implied by figure 13, the information held within the map of
the nodedge can be thought of as the metadata for the information
held in the list. However, some nodedges have no elements in the
list and therefore can be thought of as just a map that captures
some relationship between other nodedges.

These cold nodedges are the smallest unit of data that is persisted
within SP. And, as seen in the section above, all of the nodedge’s SP
signifiers are themselves composed of SPUID signifiers that refer
to other nodedges within the SP graph. All of the information in SP
is stored in this non-human readable format that has a high degree
of semantic depth.

As all SPUIDs are globally unique, this is why all nodedges can
be thought of as being part of the same global, distributed graph.

4.6 Messaging and Behavior

In the last few sections a cold, static data structure for the SP
graph has been described. So, how does anything happen? The
SP graph is animated by way of messages that are sent between
nodedges. These messages are themselves structured as nodedges.
All other nodedges live in a particular “ontological space” which is
a work space with a particular ontology (see the first map element
in the example above). All nodedges also have a “behaviour” (see
the second map element above) which specifies the program that
should be run in order to process any messages that arrive at the
given nodedge.

The “source code” of this program is itself a collection of nod-
edges that form a sub-graph of the SP graph. This source code
graph is then compiled into instruction codes that can be run on
the Semiotic Programming Virtual Machine (SPVM) that animates
all aspects of the SP environment. Chunks of SPVM instruction
code are themselves stored in SP as nodedges whose list is the list
of virtual machine instructions to perform.

However, for simplicity a crucial step has been missed out, as
we have still been talking about cold nodedges. In fact, in order to

"The theoretical reasoning as to why nodedges are constructed this way will have
to wait for another paper. So too will a description of the distinction between “fast”
and “slow” nodedges and the way that slow nodedges can contain a collection of fast
nodedges. There is no room here for these details.

Oli Sharpe

animate any nodedge so that it can process a message, the SPVM
first has to load the cold nodedge into memory within a particular
context as a hot nodedge.

4.7 SP Signs and Semantic Depth

Loading a cold nodedge into memory as a hot nodedge involves
a process that interprets every SP signifier within the cold nod-
edge into the appropriate SP sign given the “context” in which the
nodedge is going to be used. Context is quoted here as a new term
because in SP it has the specific meaning of being a particular user
working at a particular time (and place, etc) within a particular
ontological space®. Interpreting a given SP signifier involves work-
ing out which computational referent it is referring to and then
creating an SP sign object that links the two.

Q Programmer's Ontological Space
j 2K

"Tree"

2

Figure 14: A cold SP signifier becomes a hot SP sign in a par-
ticular context.

For clarity of reading from now onwards we will usually just use
“sign” and “signifier” instead of “SP sign” and “SP signifier”. And,
sometimes “space” will be used instead of the full term “ontological
space”.

So, in figure 14 we see the cold “Tree” signifier is loaded into
the programmer’s context and linked to the correct computational
referent: the object that represents the tree in the world, not the
binary tree object. Signs only exist in this kind of hot state. Note
that the signified and referent elements of the sign have grey dots
(rather than being shaded pink) as in this example they do not refer
to connected computational things. Note too that the computational
referents (whether the one representing the real tree or the binary
tree) are always also constructed from hot nodedges’. Collections
of nodedges that belong together and can behave as one thing are
referred to as “objects” in the same sense as is meant within object
oriented programming.

It is in this process of interpretation that signs have the potential
for far greater semantic depth than their traditional equivalents of
memory pointers. Note that signs are not being used in place of
variables. Signs are being used in place of the values that would
traditionally be held by variables in “pen and paper” languages'’.
8Two different users of the same space may have different permissions to interact with
the information held in the space and hence will each have their own context.
90r at least can always be thought of as if they were constructed out of hot nodedges.

1936 a simplified view of SP is that it introduces another layer of indirection (resolved
principally by the context) from the variable to the referred to value

Semprola: A Semiotic Programming Language

Author version
<Programming’18> Companion, April 9-12, 2018, Nice, France

Programmer's Ontological Space

E

"Tree"

RS

Represents / Models

Botanical Garden's Space

Figure 15: SP sign with a semantically deeper computational referent.

In traditional languages these values are typically either literal
values (e.g. an int, bool or float or whatever), or pointers to
data structures in memory. In SP the values being manipulated are
always signs.

In SP, not only are signs regularly used as “pointers” to objects
in remote ontological spaces, but also there is an expectation that
as the context changes, so the computational referent of the sign
can change. And this is not just about changing which object is
being pointed to within one context, but it could also be a change
to an object in a different ontological context.

For example, suppose the programmer in our example is able
to connect to their local horticultural garden’s ontological space
and that space has a more sophisticated representation or model
of the particular tree in the park that is being referred to in our
example. In this case, when the “Tree” signifier is interpreted into a
sign, the programmer’s ontological space will notice that it is able
to link the sign to the horticultural garden’s more sophisticated
computational representation of the tree and so this becomes the
sign’s (main) computational referent (see figure 15).

The point of this example is to note how the creation of the
sign does not just depend on the content of the signifier that was
captured at “author time”, but also on the current content of the
ontological space and user’s context in which the sign will exist
at “use time”. Over time therefore it is possible to improve the
semantic depth of these signs by improving the semantics available
in the context without changing the signifier. This in turn should
mean that in SP it will be possible to improve the semantic depth
of programs and the information they use by, for example, linking
to more ontological spaces rather than by having to re-program
the program'’.

Note too that SP signs can refer to more than one object across
more than one ontological space (again figure 15). The idea of
this is that different objects might be best at representing different
aspects of the real referent. This has echoes of Subject-Oriented

"'Many of the issues raised here about writing programs could also be applied to
writing prose as well. Hypertext already provides some ability to instill semantic depth
into the typed word, but there are many more interesting ways that prose could be
augmented with useful semantic depth. The intention is to use SP to explore this too.

Programming [2] except that here we are talking about aspects of
objects that are potentially living in multiple different ontological
spaces. There are also echoes here of the correspondence continuum
discussed by Cantwell Smith [5, 6] in that by using a given sign
we are often wanting to refer to a multitude of ever more subtle or
precise referents.

The SP sign seeks to be a single way to refer to all such objects
that are known to the ontological space in which the sign exists.
Indeed it is then by sending messages “to” this sign that messages
can actually be sent to interact with the referent object that is
considered most appropriate for the given message in the given
context.

So, while the SP sign itself is always local to the running process,
the computational referent of the SP sign is thought of as typically
being remote. This might just be remote from the running process
(but on the same physical machine) or it might be physically remote
too. Therefore it is expected that sending a message and waiting for
a response will potentially have some non-trivial latency. Program
code that performs such messaging (which should be the norm) is
considered “slow” code.

In contrast the SP sign itself (for example) is known to be process
local and therefore it is possible to interact with it in ways that
we can be confident will return essentially instantaneously. This
kind of program code is called “fast” code. In Semprola, functions
calls and object style methods calls are used to implement fast code,
and the definitions of such functions and methods cannot contain
slow code. However, much of the important, organising logic of a
Semprola program should be written in slow message handlers and
slow procedures.

4.8 Hot Nodedges

To interpret a cold nodedge into a hot nodedge the process of
interpreting a cold signifier into a hot sign is repeated for all the
signifiers that make up the cold nodedge. The resulting hot nodedge
is therefore constructed out of signs rather than signifiers.

Author version
<Programming’18> Companion, April 9-12, 2018, Nice, France

SPUID: 243/32/43 ‘

-| Ontological Space |—>{ Viv's Space |
Bob Bailey Behaviour Reading Group
Viv Smith
Ella Jones
Last Modified 25/1/2018

Peter Norris

Tim Walters

[

Oli Sharpe
SPUID: 243/32/43
Viv Smith Ontological Space Viv's Space
Bob Bailey Behaviour Reading Group
Owner Viv Smith
Ella Jones
Last Modified 25/1/2018
Peter Norris
Tim Walters

Figure 16: A cold nodedge becomes a hot nodedge within a particular context.

Figure 16 depicts this process for a cold nodedge becoming a
hot nodedge within a context. The signs are depicted simply as red
ovals with only the text of the signifier.

Users of SP (whether doing programming or using programs)
only ever interact with the information in the SP graph when it is
in the hot state. So, users (and programs) only ever interact with
signs and, through them, hot nodedges. The cold nodedge state is
only ever used by the SPVM as a method to persist information
in an inactive state, in particular for message nodedges being sent
between ontological spaces, and for persisting information on long
term storage in a distributed way.

5 SEMPROLA

Semprola is the first attempt to write a programming language for
the Semiotic Programming environment. It is very much a work
in progress so some details presented here are likely to change. In
this section some simple bits of pseudo code will be used to help
support some further discussions about the ideas behind Semprola.
And, of course, there is some irony that it is necessary to write
a “pen and paper” version of some sample code in order to write
about a programming language that is trying to get away from the
“pen and paper” conception of programming! However, hopefully
the surrounding discussion will show to the reader why this textual
rendering is a pale imitation of the real programming experience.

5.1 Language as a Platform

Before looking at the some code, there is one big picture aspect of
the experience of programming Semprola that needs to be clear to
the reader. As was outlined in the previous section, users always
engage with SP from a particular context and writing programs
in Semprola is no exception to this. Whenever logged into an SP

space it is always possible to access the integrated development en-
vironment (IDE) that allows you to modify the programs (nodedge
behaviours) that are available in your space.

The “source code” of these programs is a graph structure made
out of nodedges with a particular set of behaviours relevant to
Semprola programs. These Semprola source code graphs are then
compiled into runnable nodedges that list the SPVM instruction
codes for the SPVM to execute. So, in future there is no reason why
other languages or ways of programming could not also be made
available within the SP environment as long as they can be made
to compile down into SPVM instructions. Indeed, as the runnable
nodedges with SPVM instructions are part of the SP graph it will
be possible to write such compilers in Semprola. In this kind of way
the SP environment tries as hard as possible to avoid being a “leaky
abstraction” where new bits would often need to be written in C.

Not only does the IDE enable basic programming, but also, be-
cause the IDE is connected to the SP graph, it can also help craft
the signs of the program with appropriate semantic depth. In par-
ticular, you never program Semprola separate from the information
available in your ontological context.

For anyone who has written extensions of one kind or another to
any kind of enterprise software platform, they will be familiar with
the experience of writing bits of code where there is an assumed
context with a certain structure and information always available to
work with (such as the logged in user or whatever). As Semprola has
this idea built into the language and the IDE it can offer more useful
ways to work with the greater semantic depth that is available to it.
Therefore it may be useful to think of Semprola as an example of a
“language-as-a-platform”.

Semprola: A Semiotic Programming Language

5.2 Accessing and Setting Properties

Referring back to the scenario about Viv’s life that we set up in
section 2.6 above, let’s finally look at a few bits of pseudo code.

To start with let’s look at how the properties associated with
Viv could be accessed or changed. The following could be code
within the doctor’s clinic application. The actual program “code”
for each of the statements below is a mini-graph of nodedges. For
each label we are seeing the textual signifier that the IDE thinks
is the best way to represent the underlying sign. If our authoring
context specified the French language, and it was available, we
would be seeing the “same” code with different text. Similarly, some
programmers might prefer to use ‘=" for the assignment operator
rather than ‘:=" and to not bother with the trailing semi-colon that
is so familiar to many programmers. In the following example, blue
indicates a process local variable, magenta indicates the name of a
property and black text is either a keyword or text that should be
understood to have its normal meaning.

First we're going to look at getting hold of a given patient’s
weight (say Viv’s) and assigning it to a process local variable weight.
The textual representation of the following statements has been de-
signed to look familiar to programmers of traditional programming
languages even thought the implied semantics of each statement is
different from traditional statements for getting and setting object
properties.

The statement below gets the patient’s weight from the weight
property of the object immediately referred to by the signifier of the
sign held by variable patient. Typically that would be an object
in the current use time context. In this case we would therefore get
the clinic’s last weight for Viv: 52.1 kg (see figure 1).

weight := patient . weight ;

Note that the statement is a slow statement because even if the
patient object is in the local space that doesn’t mean that it would
be physically located on the process local machine, and so the
execution of the statement would involve message passing and the
potential for considerable latency and network failures.

The next statement gets the “best” value for the patient’s weight
from the object that has the greatest'? semantic depth for the given
property. In this case we would get the weight that Viv records at
home a couple of times a week, currently: 54.5 kg.

weight := @patient . weight

Next we’re going to imagine that Viv has had her weight taken
in the clinic today and the program is trying to store the new value.
So we’re going to be setting the property value of different referent
objects.

The statement below attempts to set the patient’s weight prop-
erty on the object immediately referred to by the signifier of the
sign held by variable patient. In this case updating the object
representing Viv in the clinic’s space.

patient . weight := 53.5 kg ;

The next statement attempts to set the patient’s weight on the
object referred to by the sign that has the greatest semantic depth
for the given property. As the clinic might not have permission to set

2How the context tries to work out which computational referent is the most appro-
priate is beyond the scope of this paper.

Author version
<Programming’18> Companion, April 9-12, 2018, Nice, France

the property on the object in Viv’s space, therefore this statement
might “fail” throwing an error condition.

@patient . weight := 53.5 kg ;

Future research will look into the most useful ways to handle this
kind of error condition and other kinds of similar situations that
will require some form of conflict resolution between competing
claims to be the “correct” computational referent for a given sign.

The statement below attempts to set the patient’s weight on the
object referred to by the sign that lives in a specific ontological
space, in this case the NHS '® space.

@(NHS)patient . weight := 53.5 kg ;

Then we have an example that has no hard coded values and
therefore is more likely to be seen in real code. So in the next
statement the local variable new weight would be holding a sign
for Viv’s newly measured weight (as a quantity with units) and the
statement is attempting to set this new value to the weight property
on the object that lives in the space referred to by the sign held by
the space variable.

@(space)patient . weight := new weight ;

Finally let’s look at an example where the remote space in which
to save the patient’s weight is obtained from the local ontological
space. The green text in the statement below specifies a location in
the taxonomy of the local ontology from which the program can
obtain the current government system for patient health records.
Not only does this help the program adapt as the context is changed,
but it also means that the same program could be used by different
clinics in different countries as long as they set up their context
appropriately.

@(Clinic > Government Systems > Patient Health Records)
patient . weight := new weight ;

As noted above, while the text appears deliberately similar to
the way that object properties are set in traditional programming
languages, there is a lot more going on behind the scenes in most of
these statements. As is hopefully clear the ‘@’ modifier is being used
to indicate something about the choice of computational referent
that the programmer wishes the program to select from the given
sign. Without the ‘@’ modifier the object immediately referred to
by the sign’s signifier should be used. Using the ‘@’ modifier will
typically result in the use of an object with greater semantic depth
and therefore the expectation is that the ‘@’ modifier should be
used a lot to ensure that the program’s semantic depth can improve
as the context becomes more sophisticated.

One last thing to note is that because the text doesn’t have to
be parsed into simple tokens by a lexical analyzer, the names of
variables and other program elements can contain whitespaces and
they can also have multiple language variants using UNICODE
strings.

5.3 Sending a Message

Next let’s imagine that Viv is developing a mini-application to help
her manage a reading group that she organizes. The pseudo code
below loops through the list of people in the reading group and
sends them all an invite message to the next meet-up.

I3NHS stands for National Health Service in the UK.

Author version
<Programming’18> Companion, April 9-12, 2018, Nice, France

foreach (person in @reading group) {
@person \/ invite message (

date := 21/4/2018

time := 8pm

venu := Modelo café

book to discuss := The Gambler
) using ;

}

The ‘\/’ symbol is being used here to indicate the command
to send the message constructed on the right hand side to the
computational referent on the left hand side. So this command will
send the invite message to the particular person in this iteration of
the foreach loop.

Semprola uses a metaphor of passing messages “down” an in-
teraction stack and then back “up” to the original initiator of the
interaction (using the ‘/\’ symbol). The messages going down and
up this interaction dialogue can behave just a like a traditional
request / response pattern, but can also be used to implement in-
terrupting patterns of dialogue and can support the interactive
throwing and handling of exceptions and error conditions.

In the example code above the message is being constructed out
of a date, a time, a venue and the book that is going to be discussed.
Obviously in a real piece of code these values would not be hard
coded in this way! The ‘@’ semantic depth modifier ensures that the
message will be sent to the best possible recipient of the message
that the context knows about at use time. For each person in the
loop the semantic depth might be different and will partly depend
on the technology being used by the recipient.

The blue text is again for local variables; the black text means
what it normally means; and the magenta text is for the names of
object properties, this time these are the properties of the message
object that are being set. The green text invite message is the
type of message being sent. The orange text

indicates a named bit of code and unfortunately we do
not have space to look at how the handling of the responses can be
programmed.

With Semprola the IDE tries to capture (and thereby check)
a greater semantic depth to the text at the time the code is being
written (so from the author’s context which is referred to as “author
time”). For example, the text “8pm” is interpreted by the IDE at
author time to mean eight o’clock in the evening, but Semprola
would also capture the timezone of the author’s context. This is a
good, simple example where the saved, SP signifier for this part
of the code will therefore be more than just the text “8pm”. The
deeper semantic (author time) interpretation will be available to
the programmer to check by hovering over the given piece of text.

In the case of the text “8pm” there may be little room for doubt
about the intended meaning, but what about the book title, “The
Gambler”. We can deduce from the message property “book to
discuss” that this is the title of a book, but which book? Maybe we
mean Fyodor Dostoyevsky’s book, but if we’re not more precise
there’s a risk (depending on the reading group!) that someone turns
up having read, say, Denise Grover Swank’s book with the same
title from the “The Wedding Pact” series or Ewan MacKenna’s book
with the same title about the footballer Oisin McConville. The aim
is for the Semprola IDE to one day be able to spot that this book

Oli Sharpe

title is ambiguous and ask the programmer to be more specific
by picking which book they are referring to and then storing this
greater semantic depth information in the SP signifier.

In reality when programming the need to give signifiers greater
semantic depth will more likely apply to parts of the program itself
rather than to hard coded data, but the general point still applies.
And, yes, there are ways to handle these kinds of issues to a certain
degree within existing plaintext program code. For example we reg-
ularly use namespaces to distinguish between different procedures
with the same name. However, namespaces are a very crude way
to indicate what we mean by linking to a given implementation of
a procedure. Mostly we only mean that the system should use the
particular version of that procedure that we supplied at compile
time. But in the continuous programming environment of SP there
will not be a single compile time, but rather an on-going process
of recompiling different parts of the program as they are updated.
And if we know that the given procedure is going to be updated
over time then we should, for example, have the choice of whether
to stick to the version that existed at author time or to always use
the latest compatible stable version.

Hopefully the discussion around this Semprola pseudo code
has given a hint of how Semprola aims to support the creation
of programs that use signs in a context in order to have greater
semantic depth than offered by traditional programming languages.

6 CONCLUSION

Computers and the way we use them have changed so much since
the 1960s that it is time we moved away from the traditional “pen
and paper” conception of programming that has remained with us
since that time. Semiotic Programming is a new conception of pro-
gramming that attempts to do this by putting a context dependent
system of signs at the heart of how we construct and use programs.

Despite being a relatively long paper, this could only be a fairly
high level introduction to the semiotic conception of programming
and its first programming language: Semprola. Hopefully it gives
enough of a flavor of what Semiotic Programming is trying to
achieve and how the experience of programming Semprola will be
different from programming a traditional language.

REFERENCES

[1] Daniel Chandler. 2017. Semiotics: The Basics. —Routledge.
http://visual-memory.co.uk/daniel/Documents/S4B/).

[2] William Harrison and Harold Ossher. 1993. Subject-oriented Programming: A
Critique of Pure Objects. In Proceedings of the Eighth Annual Conference on Object-
oriented Programming Systems, Languages, and Applications (OOPSLA 93). ACM,
New York, NY, USA, 411-428. https://doi.org/10.1145/165854.165932

[3] JetBrains. 2018. MPS (Meta Programming System). Retrieved May 2018 from
https://www.jetbrains.com/mps/

[4] EricS. Raymond. 2001. The Cathedral & the Bazaar. O’Reilly Media.

[5] Brian Cantwell Smith. 1987. The correspondence continuum. Technical Report
CSLI-87-71. Center for the Study of Language and Information/SRI International,
Menlo Park, CA (333 Ravenswood Ave., Menlo Park 94025).

6] Brian Cantwell Smith. 1998. On the Origin of Objects. MIT Press.

] IEEE Spectrum. 2018. The 2017 Top Programming Languages. Re-
trieved April 2018 from https://spectrum.ieee.org/computing/software/
the-2017-top-programming-languages

[8] Kumiko Tanaka-Ishii. 2010. Semiotics of Programming. Cambridge University

Press.

[9] TIOBE. 2018. TIOBE Index. Retrieved April 2018 from https://www.tiobe.com/

tiobe-index/

[10] Wikipedia contributors. 2018. Mars Climate Orbiter. Retrieved April 2018 from

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure

(See also:

http://visual-memory.co.uk/daniel/Documents/S4B/
https://doi.org/10.1145/165854.165932
https://www.jetbrains.com/mps/
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure

	Abstract
	1 Introduction
	1.1 A Common Heritage

	2 What's the problem?
	2.1 Let’s Assume There’s Just One Ontology
	2.2 Compile Time Semantics
	2.3 Naked Data – Quantities Without Units
	2.4 Functions as the Organising Unit of Code
	2.5 Other Choices to Mention
	2.6 Viv Programming Her Life
	2.7 Thinking Beyond Symbol Manipulation

	3 Semiotics
	3.1 The Saussurean Sign
	3.2 The Peircean Sign
	3.3 Semiotics of Programming

	4 Semiotic Programming (SP)
	4.1 The Semiotic Programming Sign
	4.2 Purely Computational Referents
	4.3 Internet of Things
	4.4 SP Signifiers, SPUIDs and Semantic Depth
	4.5 Nodedges and the SP Graph
	4.6 Messaging and Behavior
	4.7 SP Signs and Semantic Depth
	4.8 Hot Nodedges

	5 Semprola
	5.1 Language as a Platform
	5.2 Accessing and Setting Properties
	5.3 Sending a Message

	6 Conclusion
	References

