
Lector in Codigo or The Role of the Reader
Alvaro Videla
Durazno, Uruguay

videlalvaro@gmail.com

ABSTRACT
In this article I want to explore the relation between the process
of writing computer programs with that of writing literary works
of fiction. I want to see what parallels can we trace from the ideas
presented by Umberto Eco in Lector in Fabula and Six Walks in the
Fictional Woods, with the way we write programs today.

The goal of this article is to ask–and try to answer–the following
questions: what can we learn as programmers from literary theory?
What ideas can we incorporate from that discipline into our day
to day programming activities, so we write code that’s easier to
understand for other humans (or our future selves)?

CCS CONCEPTS
• Software and its engineering→Abstraction, modeling and
modularity; Software design tradeoffs; Programming teams; • Gen-
eral and reference→ General conference proceedings;

KEYWORDS
metaphors, abstraction, literature, model reader, model author, en-
cyclopedia, literate programming
ACM Reference Format:
Alvaro Videla. 2018. Lector in Codigo or The Role of the Reader. In Proceed-
ings of 2nd International Conference on the Art, Science, and Engineering of
Programming (Author version <Programming’18> Companion). ACM, New
York, NY, USA, ?? pages. https://doi.org/10.1145/3191697.3214326

1 PROGRAMMING AS A HUMANS-FIRST
ACTIVITY

The need for computer programs that are easier to understand for
humans is not a new one. Since the early ’50s as programmers
started to distance themselves from machine code and began to
program in higher level languages, we began to see a need to write
code that appeals not only to machines but to humans as well.
When David Wheeler [?] introduced the idea of the subroutine to
the programming world, he said that:

sub-routines are very useful–although not absolutely
necessary–and that the prime objectives to be born in
mind when constructing them are simplicity of use,
correctness of codes and accuracy of description.

So we see that subroutines are not necessary for a program to
work, but they are a device that can help with program understand-
ing among other things.

Almost a decade later an anonymous article was published in the
Datamation magazine called What A Programmer Does [?], which
is surprising for how relatable those ideas are today. Its author is

Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France
2018. ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00
https://doi.org/10.1145/3191697.3214326

also concerned with the way humans communicate knowledge to
each other, in the forms of programs. The money quote is this one:

A programmer does not primarily write code; rather,
he primarily writes to another programmer about his
problem solution.

Later they reaffirm their point by saying:
Both the value and quality of a programmer’s work
improve directly with the importance he places on
communicating his program to a human, rather than
merely to the machine.

We could say that this sentiment is finally echoed in its most
popular form in Structure and Interpretation of Computer Programs
(SICP) [?] when their authors say:

Programs must be written for people to read, and only
incidentally for machines to execute.

That is a strong statement, elevating humans as the main re-
cipients of computer programs. Computers becoming mere tools
that are able to run those programs at a speed that’s useful for our
practical purposes.

These ideas, presented by programmers for programmers, con-
trast with the ways programs are being seen by the industry and by
the public in general. That is to say, we program because we expect
results from the programs we produce. Whether it’s accounting, or
finding the route to hour hotel in a foreign city, most consumers of
programs use them because of the results they produce. In fact, we
could argue that a user will be quite displeased if they find them-
selves lost after following the routes offered by their GPS, even if
customer support arguments that the code for their GPS software
looks really pretty. We could say that this practicality has placed
more emphasis in the results produced by programs than in how
well they read for other people. When the goal is to meet a client’s
deadline, then the results produced by a program, it’s visible output,
is what matters (unless in cases where we are selling the software
itself, where the end consumers will be other programmers).

This last point shows us that if we want to advocate for writing
programs that other programmers can understand, then we need
to understand that we need to accommodate these ideas in the
software industry, an industry where the results produced by the
programs is in constant tension with the quality in which those
programs are produced, usually due to budget requirements. If we
want to advocate for programs that are easier to understand, we
need not forget that while programmers might want that as well,
there are other forces at play that may compel programmers to
declare their programs to be ready for delivery as soon as they
produce the expected outputs, rather than investing time in tasks
like refactoring. I said expected outputs because talking about cor-
rect outputs would be the topic of a complete different discussion.
Having said that, the rest of this article assumes that we share the
preoccupation of the authors of SICP, of the anonymous author

https://doi.org/10.1145/3191697.3214326
https://doi.org/10.1145/3191697.3214326

Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France Alvaro Videla

of What A Programmer Does, and that of David Wheeler, among
others. Who else was interested in these ideas? Donald Knuth.

2 LITERATE PROGRAMMING
In Literate Programming Donald Knuth [?] wrote about the attitude
we should have when we write programs: “instead of imagining
that our main task is to instruct a computer what to do, let us
concentrate rather on explaining to human beings what we want
a computer to do”. He goes on in his paper explaining the WEB
system for writing software documentation, which we could say
has been partially adopted by the industry in tools like Java Docs
and the like.

So while we have systems that can help us write documenta-
tion, we still have the problem of how to effectively transfer our
tacit knowledge about the system to other programmers. Literate
Programming is a good step towards placing emphasis on docu-
mentation and communication, but still doesn’t explain how we
could accomplish that goal. It’s interesting at least that he points at
literature as a place where we could learn techniques for writing
programs that are easier to understand for other humans.

Here we need to address a difference between writing (as in
literature), and programming that’s been raised by papers like Pro-
gramming is Writing is Programming by Herman and Aldewereld [?
]. There they say:

a difference between writing and programming, [is
that] in programming, the programmer gets feedback
very early on whether the program text is executable,
during compiling. Furthermore, they get feedback on
whether the program is working as intended.

One could argue that while this is true, knowing that a program
is working as intended doesn’t indicate that we know what the
program actually means, that is, what process from the real world
is trying to represent, what problem is trying to solve, neither is
telling us how said problem has been solved.

We could compare this with playing music on a guitar by reading
the notes as they appear on a staff. In the guitar an E5 could be
played on the 12th fret on the 6th string, on the 7th fret on the 5th
string and on the 2nd fret on the 4th string. Since all these finger
positions produce the same sound, we could say the music was
executed as written in the staff, but this is not sufficient to consider
it correct playing. As Carlevaro explains in his Serie Didáctica para
Guitarra [?]:

Correct guitar playing is unconceivable without cor-
rect fingering.

So it’s not only is important the result produced by a function, or
the musical note emitted by an instrument, but also it’s important
how these results were produced.

As Knuth writes in The Art of Computer Programming [?],
is a random function that returns the number 2 as result, a valid
implementation? Equally we could ask: is a square function that
returns 25 a correct implementation? As long as the input values for
the square function happen to be 5 or -5, then the implementation
appears to be correct.

While this example might sound like a stretch, TDD [?] advo-
cates to start writing stub functions that behave exactly like this,
providing the minimum implementation that could yield a correct

result for a particular test. This kinds of testing presents the prob-
lem of needing to submit a program to every kind of possible input
to show that it works as expected. In the words of Dijkstra [?]:

Program testing can be used to show the presence of
bugs, but never to show their absence!.

Tools like QuickCheck [?] try to alleviate this problem by gen-
erating random input for tests, while at the same time presenting
techniques like Property Based Testing. So while we are creating
better tools to prove the correctness of programs, we are still left to
our own means when it comes to understanding what a program is
doing.

Does this means we should consider every program as a work of
literature like Knuth says in his paper? In Cybertext: Perspectives
on Ergodic Literature, Espen J. Aarseth presents a different point
of view [?]:

[...] a search for literary value in texts that are neither
intended nor structured as literature will only obscure
the unique aspects of these texts and transform a
formal investigation into an apologetic crusade.

I concur with Aarseth. Trying to find literary value in programs
seems to be a task destined to fail, because programs aren’t written
with a literary goal. That doesn’t mean there isn’t any value in
thinking of programs as literature. I think there is, but in a different
way. We should look at literature and learn from the techniques
authors use when writing fictional works. This means we should
go to the Humanities side of the building and learn from Literature
Theory, Linguistics and Semiotics and incorporate some of their
techniques into our day to day activities as programmers.

3 KNOWLEDGE SHARING
Before we delve into the various ideas from Literary Theory that
could help us improve the way we write our programs to we share
knowledge between programmers, we need to ask ourselves what
kind of knowledge are we trying to share. What is this meaning
that programs should convey and that me as a programmer reading
a certain piece of code should be able to understand.

In Programming as Theory Building Peter Naur [?] draws our
attention towards the idea of a Theory based on Gilbert Ryle’s
The Concept of Mind [?]. Naur explains the knowledge a software
engineer builds about a system in the following terms:

[...] a person who has or possesses a theory in this
sense knows how to do certain things and in addition
can support the actual doing with explanations, justi-
fications, and answers to queries, about the activity
of concern.

and he continues:
[...]what has to be built by the programmer is a theory
of how certain affairs of the world will be handled by,
or supported by, a computer program.

So from the moment we do requirements gathering, to how we
implement those requirements in code, we are building a theory
that tacitly includes the different tradeoffs we took along the way.
For example: why are we using Long instead of Integer for the
numbers we use in certain class; why the time resolutions is in
nanoseconds and not milliseconds; why we added a caching layer

Lector in Codigo or The Role of the Reader
Author version

<Programming’18> Companion, April 9–12, 2018, Nice, France

to avoid network roundtrips; why we decided to implement our
own library for problem X instead of using what was available on
the market; why our key value data structure is backed by a tree
instead of an array; why we decided to not add a layer of abstraction
between the database and its query language; and so on. Of course
the list is not exhaustive. Some answers to those questions might
be clearly obtained by reading the code, like for example: let’s say
there’s just one SQL query in the whole project. So we could argue
there was no need for a library that abstracted the database away.

In this article we are interested about those instances where
knowledge cannot be immediately obtained from the source code,
its tests and documentation, or any of the other artifacts produced
by the code. There is where we want to go and look for help in
Literary Theory, Linguistics, and related disciplines, so we see how
we could improve the way we write software.

When we try to read code written by other programmers or by a
past version of ourselves, we are presented with the task of reverse
engineering that code. We start by trying to understand what the
original programmers tried to solve with that program. It doesn’t
matter if this is legacy code or if we just landed on a team and we
are handed with the next issue on the bug tracker. We will be faced
with some code and we will have to read it and understand it so
we can proceed with the confidence that we are modifying it in the
right way, or adding the new feature in the right place, so we solve
the problem at hand.

The problem with this approach is that it places the burden of
understanding the code in the reader. The reader has to be able to de-
cipher the code, but the difference with cryptography is that we are
not adversaries, but members of the same team, so understanding
code shouldn’t be a challenge, but a matter of collaboration.

Imagine if every time we tried to read a book, we had to play
code breakers? Unless we were reading the Finnegans Wake, I’m
sure that wouldn’t be a enjoyable reading experience. In the case
of programming, unless we have are in the business of reverse en-
gineering code, then we shouldn’t have the need to play Finnegans
Wake every time we are faced for the first time with a program.

So what can we do as programmers to help others understand
our code?

4 THE ENCYCLOPEDIA
In Lector in Fabula [?] and Six Walks in the Fictional Woods [?]
Eco introduces the idea of the Encyclopedia, which comprises all
the knowledge in the world. It’s safe to assume that no human
posses that knowledge. We have our own limited encyclopedias
(in lowercase). Whenever we try to interpret a text we bring our
own encyclopedia into the game and we rebuild its contents, we
actualize it according to our own competence. Consider this very
short story:

I sat in front of my computer and started coding.
When we read a text like in the previous example, we make a

lot of choices when it comes to actualize that text. If we imagine
the programmer typing their program on a laptop or a on a key-
board connected to a computer, it doesn’t matter, unless the device
used is consequential to the rest of the story. I’m used to write
programs on a laptop, so most probably I will image that scene with
a person typing their program on that kind of computer. What’s

the programmer’s gender? Are their blond or have dark hair? For
some readers that doesn’t matter, so they don’t even think about
that, while other people might render them according to their own
preferences or biases. The lesson to take home from this, is that
we fill in the blanks on a story using what’s available on our own
encyclopedia. This opens a very interesting question of how we
as authors manage to transfer our ideas from our minds to our
communication recipients or destinataries. If we fail at that, the
other person might end up building a different interpretation of
what the code does.

A key idea from Lector in Fabula is Eco’s criticism of communi-
cation theory, he says:

[...] the competence of the recipient is not necessarily
that of the sender.

and later he adds:
Therefore, in order to “decode” a verbal message, in
addition to linguistic competence, a differently cir-
cumstantial competence, an ability to trigger presup-
positions, to repress idiosyncrasies, etc., and so on.

So how do we go about understanding the target audience for
our programs? Eco has an answer for that as well, theModel Reader.

5 THE MODEL READER
TheModel Reader is not the empirical reader (not you, or me). It’s a
reader that lives in the mind of the author, which the author builds
as they write their story. This model reader will help the author
decide how much detail is required in their work, so the empirical
readers are able to understand it. Let’s go back to our one sentence
story:

I sat in front of my computer and started coding.
In that text I’ve made some choices about how much info I

wanted to convey based on myModel Reader; in this case I assumed
that I don’t need to explain that I’m using a keyboard to type
the program, because in most cases, that’s how it’s done. In that
one sentence story, my Model Reader is a person that’s familiar
with how computers work, and with how we type programs in a
computer today.

To show how important the model reader is, let’s imagine we
see a sign at the London Underground system that says: dogs must
be carried on escalator. In Literary Theory: an Introduction [?], Terry
Eagleton, asks the following question about that simple sentence:

• Does it mean that you must carry a dog in the escalator?
• Are you going to be banned from the escalator unless you
find a stray dog to carry?

• “Carried” is to be taken metaphorically and help dogs get
through life?

• How do I know this is not a decoration?
• I need to understand that the sign has been placed there by
some authority Conventions: I understand that “escalator”
means this escalator and not some escalator in Paraguay.

• “Must be” means must be now.
So we see that such a simple sentence like “dogs must be carried

on escalator”, implies a Model Reader that understands that if they
are using the London Underground system, and they bring a dog,
the must carry that dog if they have to use an escalator. All that

Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France Alvaro Videla

information, while not provided in the text, was implied when the
designers of the sign chose their Model Reader.

So one aspect of the idea of the Model Reader revolves around
how much information or context do we provide in the text, so the
message we are trying to convey is understandable. Another aspect
is that, as the story progresses the author also builds the Model
Reader.

Now let’s imagine my previous text went as follows:“I sat in
front of my computer and started coding. The clouds outside my
window had cleared, revealing the Mars landscape.” Once the word
Mars appears in the text, we can easily tell that what seemed to be
a personal recollection (about me typing into a computer), turned
out to be a science fiction story about space exploration. With that
small clue (Mars) the author built a Model Reader that must accept
that the story is fictional, since so far we don’t have humans living
in Mars.

In Lector in Fabula, Eco goes deeper into the idea of the Model
Reader (and the Model Author), to present the concept of textual
cooperation. There he says:

A text is a lazy (or economic) mechanism that lives
on the surplus value of meaning introduced by the
recipient [...]

Reading is essentially a work of cooperation between the author
and the reader.

To summarize, the author uses a Model Reader in order to decide
how to tell the story, both in how much detail they need to provide,
and on how to give clues to tell the reader this is a noir novel, or
this is epic fantasy, or everything that was said so far was part of a
dream so be careful if you keep reading, since what comes next might
still be part of a dream. The Model Reader is someone that’s willing
to cooperate with the author. The Model Reader actualizes the text.

The question is how does the concept of the Model Reader can
help us think about how we write programs? Who is our Model
Reader? Is it the computer? Is it another human, or a future me?

6 A PROGRAMMER’S MODEL READER
As I wrote in the introduction to this article, a striking difference
between writing programs and writing literature is that most of
the time programs are written for computers to execute, not for
humans to find the development of plots and storylines like one
would expect from a work of fiction. As we already argued in this
article, when we are writing software we are trying to satisfy some
very practical needs, trying to address some human problem. So
how can we integrate these two seemingly opposing points of view?

We can try to answer that question by pondering who is the
Model Reader when we write programs? Who do we keep in mind
while we type our code? The first answer that comes to mind is the
compiler. We write code trying to follow all the syntactical rules of
a specific programming language, while providing all the necessary
clues for it to find the definitions of the functions and types used in
the program.We can say that when we program “we play computer”
in our heads. Since today almost nobody writes code for a specific
computer architecture, we can say that we build a model computer
in our minds, and then we try to second guess how it will run our
code based on our assumptions about that ideal computer. So our

Model Reader fluctuates between trying to satisfy a compiler and
an imaginary computer.

7 A COOPERATION GAME
The idea of playing computer in our heads is interesting because it
relates to Eco’s idea of producing text as a game of strategy. To win
in a game of strategy we build a model opponent and use that model
to try to anticipate their moves, so we can put in place a strategy
that help us win the game. Eco says that in a way at Waterloo,
Wellington built a more accurate model of Napoleon.

Let’s forget about fighting and let’s think in terms of cooperation,
let’s think on how we build strategies that can help the recipients
of the text actualize it. In the words of Eco:

A text wants someone to help it work.

How can we help a computer/compiler to actualize a text, so it’s
able to bring the code to life, in the same way we do when we read
fiction? Borrowing from literature we can say we do world building
when we declare types, or when we define interfaces in header files.
Later we tell the compiler where to find the headers that define
the interfaces used in our programs. Whenever we use names, like
variables, we usually have to declare them first. In strong-typed
languages, we even assign types to those variables, which help us
reason about those programs, but also give clues to the compiler
about what to do whenever they find those datatypes further down
in the program. So on one hand a variable name, or its type, appeals
to the reader to access their encyclopedia to try to understand what
that variable represents, on the other hand, when we define those
variables, or specify their types, we are building said reader as the
text is built.

Still, we keep seeing this duplicity of writing for the computer,
and writing for a human reader. Again, Espen Aarseth raises an
interesting point in his book about cybertext:

Programs are normally written with two kinds of re-
ceivers in mind: the machines and other programmers.
This gives rise to a double standard of aesthetics, often
in conflict: efficiency and clarity.

This poses an interesting question, which can be related to Eco’s
idea of the different levels of readers.

8 DIFFERENT LEVELS OF READERS
In the essay Intertextual Irony and Levels of Reading [?], Umberto
Eco writes that texts that have an aesthetic aim tend to construct
several levels of Model Readers. In the first level, the reader just
wishes to finish the story, to know what happens, to know how it
ends. The second level reader is a semiotic or aesthetic reader, who
wants to know how what happens has been narrated. To become a
second level reader, one has to read a story many times.

I want to posit that we humans are the second level readers
of our programs. We are the ones that want to know how what
happens in the code has been narrated.

The question is then how do we manage to interpret a text, and
add meaning to it, understanding its intended goal? And how we as
authors/programmers can help others understand our code? Let’s
talk about metaphors.

Lector in Codigo or The Role of the Reader
Author version

<Programming’18> Companion, April 9–12, 2018, Nice, France

9 METAPHORS
In Metaphors We Compute By [?] I wrote that code is a metaphor
for a solution we found. A program is a translation into code of
that problem solution. The explanatory power of that code, how
well the solution is transmitted, is the measure of its elegance.

I will not repeat the whole argument presented in that article,
but the gist of it is that if we have a collection of elements that need
to be unique, a Set data structure has more explanatory power than
an Array, even tho an Array would fit the job just fine, because
the Set implies element uniqueness. A second point is the power
metaphors have for obscuring and augmenting our knowledge. In
Epidemic algorithms for replicated database maintenance Demers et
al. [?] explain how gossip was a good metaphor for understand-
ing the replication technique they were proposing, but it wasn’t
until they come to the realization that it mapped quite well to the
idea of epidemics and how they spread in a population. This real-
ization helped them wield all the mathematical theory behind the
prevention of epidemics’ spread.

As Peter Gärdenfors says in Geometry of Meaning: Semantics
Based on Conceptual Spaces [?]:

Metaphorical mappings preserve the the cognitive
topology of the source domain in a way consistent
with the inherent structure of the target domain.Metaphors
transfer information from one conceptual domain to
another. What is transferred is a pattern rather than
domain specific information. A metaphor can thus be
used to identify a structure in a domain that would
not have been discovered otherwise.

So metaphors help with understanding, which means we could
leverage their power when choosing the abstractions we use in our
code. The understanding of who the Model Readers of our code are,
will serve as guide when needing to choose the right metaphor. For
example if we implement the exponentiation algorithm presented
in section 1.2.4 of Structure and Interpretation of Computer Pro-
grams [?], should we do it by allowing our function to just accept
integers, or should we go for an abstraction like Monoids so the
code would work for other data types that provide an associative
binary operation and identity, like Strings and concatenation, or
a Matrix and exponentiation? (See Elements of Programming by [?
] for a discussion on how to evolve the exponentiation algorithm
for from Integers to Monoids).

What other tool could we bring from literature that could help
us write programs that are easier to understand? Enter paratexts.

10 PARATEXTS
In literature there’s the idea of the Paratext, which Eco quoting
Gérard Genette defines as:

[...] the “paratext” consists of the whole series of mes-
sages that accompany and help explain a given text–
messages such as advertisements, jacket copy, title,
subtitles, introduction, reviews, and so on.

Genette adds the following to his definition of paratext [?]:
[a paratext is] a privileged place of a pragmatics and
a strategy, of an influence on the public, an influ-
ence that–whether well or poorly understood and

achieved–is at the service of a better reception for the
text and a more pertinent reading of it.

An obvious instance of paratexts in literature could be found in
old books, like Don Quixote, where chapter titles are followed by
text like this:

Chapter I. Which treats of the character and pursuits
of the famous gentleman Don Quixote of La Mancha.

Do we have these kinds of paratext in code? Yes, as said ear-
lier, we not only specify imports, we arrange the code in modules,
packages and libraries. We specify flags for the compiler that can
change the way the software is built (for example changing a li-
brary’s location). In languages like Haskell we could add pragmas
to the source code that could change the meaning of the program
or even its efficiency. This means that as we write code, we are not
only targeting our model computer, we are also targeting a specific
compiler. We are trying to provide it with information so it’s able
to understand what it should do when it finds code stating that the
variable isActive is of the type AtomicBoolean.

We also need to consider how paratexts helps us humans under-
stand programs. When we read utils as part of a package name
we build a different set of expectations about the contents of that
package from when we read network, or persistence. A class
name like FileSystem is telling us a lot of things about what to
expect in its API. Finding a public method called stringCompare
inside it will feel very strange. Code comments are probably one
of the most important paratexts that can help other programmers
understand our code. Keeping them in sync with the code is a whole
different problem. Not even Cervantes escaped this fate: in Don
Quixote, the original description for Chapter X doesn’t match the
contents of the chapter!

To understand how important paratexts are, considerwhat Genette
says about them:

To indicate what is at stake, we can ask one simple
question as an example: limited to the text alone and
without a guiding set of directions, how would we
read Joyce’s Ulysses if it were not entitled Ulysses?

Let’s try to visualize this with a simple code example. Consider
the following class representing a user:

class User {
String username;
String password;
String role;

User(String username, String password, String role) {
this.username = username;
this.password = password;
this.role = role;

}

public String getUsername() {return username;}
public String getPassword() {return password;}
public String getRole() {return role;}

}

Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France Alvaro Videla

The code of this class doesn’t offer enough information to tell
us what is the class purpose. Now let’s consider the following test
case:
User user = new User('alice', 'secret', 'admin');
assertEquals(user.getUsername(), 'alice');
assertEquals(user.getPassword(), 'secret');
assertEquals(user.getRole(), 'admin');

The previous test can give us feedback about the code working
as expected, but we are still in the dark about what is this class
purpose, that is, what concept of the real world this class is trying
to represent.

Now let’s see the following class:
package database;

class User {
String username;
String password;
String role;

User(String username, String password, String role) {
this.username = username;
this.password = password;
this.role = role;

}

public String getUsername() {return username;}
public String getPassword() {return password;}
public String getRole() {return role;}

}

The only difference with the previous code is the line saying
package database.

The mere fact that we include a paratext telling us which pack-
age this class belongs to, tells us immediately that this class serves
a different purpose from another User class that could appear in-
side the model package. The latter could represent a User in the
system, say our social network website, which has different roles,
like paying member, while the database User class could offer roles
like admin, app_read or app_write, for example. In a language
without packages, the same information could be conveyed via the
project’s folder structure.

On a funnier note, what would Magritte think of the following
code?
// This is not a person
class Person {

String name;
String age;

User(String name, String age) {
this.name = name;
this.age = age;

}

public String getName() {return name;}
public String getAge() {return age;}

}

So while it’s dubious that someone will think the previous class
encompasses the whole definition of a person, howmany of us have
spent hours debugging a FileSystem class that doesn’t live up to
its API’s promises, because ultimately we didn’t realize that this
class is not the File System? So that comment about the class not
being a person, even if funny, can lead us to interesting semiotical
questions about the realities represented by our code.

11 CONCLUSION
The last point brings us back to metaphors, maps, and ultimately
how we see the world. Espen Aarseth writes:

[...] paradigms such as object orientation [inspire]
practical philosophies and provides hermeneutic mod-
els for organizing and understanding the world, both
directly (through programed systems) and indirectly
(through the worldviews of computer engineers).

Earlier I said that a program is a metaphor for a solution we
found. A map between reality and the world of data structures and
algorithms. Code is a kind of visualization for a particular problem.
Visualizations are made with certain goals and certain audiences
in mind. This is what Noah Iliinsky has to say about maps in the
book Beautiful Visualization [?], when he describes the style of
the London Tube’s Map, a map that detached itself from a mere
geographical representation of the underground lines:

That freed the map of any attachment to accurate
representation of geography and led to an abstracted
visual style that more simply reflected the realities
of subway travel: once you’re in the system, what
matters most is your logical relationship to the rest
of the subway system.

Then Iliinsky writes about what makes for an effective visualiza-
tion:

The first area to consider is what knowledge you’re
trying to convey, what question you’re trying to an-
swer, or what story you’re trying to tell.
[...] the next consideration is how the visualization is
going to be used. The readers and their needs, jargon,
and biases must all be considered.
The readers’ specific knowledge needs may not be
well understood initially, but this is still a critical fac-
tor to bear in mind during the design process.
If you cannot, eventually, express your goal concisely
in terms of your readers and their needs, you don’t
have a target to aim for and have no way to gauge
your success.
“Our goal is to provide a view of the London subway
system that allows riders to easily determine routes
between stations,”
Understanding the goals of the visualization will al-
low you to effectively select which facets of the data
to include and which are not useful or, worse, are
distracting.

His points resonate with the ideas of choosing a Model Reader,
where we ask ourselves what elements from our encyclopedia we
need to share, and which ones could be readily actualized by the

Lector in Codigo or The Role of the Reader
Author version

<Programming’18> Companion, April 9–12, 2018, Nice, France

recipients of our texts. We also must write code with certain goals in
mind, not only thinking about what our final users will be able to do
with the product, but also thinking about what we will allow other
programs to perform with the APIs we expose. How good is the
theory we build about the problem we are solving, will determine
the usability our maps–our code–will end up having. Because in the
end, with abstractions–whether they are types, classes or interfaces–
we are designing maps.

As William Kent says in Data and Reality: a Timeless Perspective
on Perceiving and Managing Information in Our Imprecise World [?
]:

After a while it dawned on me that these are all just
maps, being poor artificial approximations of some
real underlying terrain.

and he adds:

What is the territory really like? How can I describe
it to you? Any description I give you is just another
map.

The theory we built about our software, with its implicit deci-
sions and tradeoffs, will be effectively shared by choosing the right
metaphors that will resonate with our reader’s encyclopedias. These
metaphors will work like maps that guide understanding. We will
also count with the help of paratexts. These paratexts will work
like sign posts on a country road, so when the map is not good
enough, our users will still be able to orient themselves. Because
ultimately we need to understand what Borges so clearly illustrates
in his short story On Exactitude in Science [?], and that is: the map
is not the territory.

