
Files as Directories: Some Thoughts on Accessing Structured
Data within Files

Raphael Wimmer
University of Regensburg
Regensburg, Germany
raphael.wimmer@ur.de

ABSTRACT
This paper explores the concept of files as directories (FAD) as a uni-
fied interface to structured data within a file by representing such
a file as (virtual) directory and the structured data as subdirecto-
ries and subfiles.
Transparent conversion of files and their structured data into di-
rectory trees is to be handled by virtual filesystem providers. This
allows for arbitrary applications and programming languages to
read and write data within supported file types without the need
to understand the file format - e.g., in order to modify pixel values
within an image file, paragraphs in a text document, or settings in
a configuration file.
Advantages of this approach compared to API-mediated file ac-
cess might include better learnability, modularity, explorability,
synchronous access, better integration of proprietary applications,
and a few other nice features. While technical issues of the FAD
concept have been discussed by developers in the past, no major
operating system allows FAD at themoment. In this paper I present
concept, advantages, limitations, and use cases of FAD.

CCS CONCEPTS
• Human-centered computing → Command line interfaces;
• Information systems → Directory structures; • Software and
its engineering→ File systemsmanagement;Data types and struc-
tures; Interface definition languages;

KEYWORDS
programming, filesystems, APIs, concept
ACM Reference Format:
Raphael Wimmer. 2018. Files as Directories: Some Thoughts on Accessing
Structured Data within Files. In Proceedings of 2nd International Conference
on the Art, Science, and Engineering of Programming (<Programming’18>
Companion). ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3191697.3214323

<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of 2nd
International Conference on the Art, Science, and Engineering of Programming (<Pro-
gramming’18> Companion), https://doi.org/10.1145/3191697.3214323.

1 MOTIVATION
As more and more physical media and workflows are transformed
into digital ones, users lose control over them. Whereas physical
desktops allow knowledge workers to customize their workspace
and workflows to their liking, their digital counterparts constrain
the users’ configuration options to those explicitly implemented
by the developers of operating system and applications.
In order to empower end users to customize and automate their
digital workspaces and workflows, it has been suggested repeat-
edly that ‘everyone should learn to code’. However, as Ko et al.
[1] show, novice end-user programmers face several learning bar-
riers. Even if a user is able to formulate an algorithmic solution to
a problem, they have difficulty in finding the right functions to use,
using them, combining them, understanding the system state, and
understanding the external behavior.
Furthermore, the choice of programming language also limits the
choice of APIs that can be used. For example, a user might want
to write a tool that modifies clipboard contents. Programming lan-
guages / ecosystems that do not offer an API for the system clip-
board would be useless for that user - even if the language itself
were powerful and easy to learn.
In many cases, knowledge workers might actually need better end-
user configuration tools, similar to those in system administration.
System administrators can be considered end-user programmers
— instead of developing all software for their servers and worksta-
tions themselves, they select, combine, and configure existing soft-
ware. In many cases, system administrators also write glue code
in a scripting language to ease configuration or get multiple com-
ponents to work together. The UNIX approach to system manage-
ment - storing configuration data in plain-text files andmaking sys-
tem state available through device files - combined with its pipes
and filters1 paradigm offers multiple advantages for system admin-
istration. For example, users can easily explore configuration files,
create backups, or annotate them. Furthermore, nearly all config-
uration tasks can be performed using any programming language
that supports reading and writing files.
However, the system administration approach can not be easily
transferred to workspace customization. In most cases, users do
not only work with plain-text files but with documents in a variety
of file formats. In order to programmatically read or modify such
files, a user would need to learn how to use an appropriate API —
if it is even available for one of the programming languages they
know.

1http://doc.cat-v.org/unix/pipes/

https://doi.org/10.1145/3191697.3214323
https://doi.org/10.1145/3191697.3214323
https://doi.org/10.1145/3191697.3214323
http://doc.cat-v.org/unix/pipes/

<Programming’18> Companion, April 9–12, 2018, Nice, France Raphael Wimmer

In this paper I present files as directories2 (FAD), a modification
of the traditional hierarchical file system concept that allows for
accessing structured data within a file using a tree of virtual sub-
directories and subfiles within the file. Transparent conversion be-
tween both representations is handled by modular virtual file sys-
tems.The concept allows for users to access andmodify contents of
arbitrary files using a set of simple file operations (e.g., open/close,
read/write) that are supported by most programming languages. A
major benefit of FAD is that it allows end-user programmers to

• interactively explore the data they work with,
• use their preferred tools and programming languages, and
• focus on the algorithmic aspects of a problem instead of learn-

ing how to use specific APIs.

The main contributions of this paper are description, history, and
discussion of the files as directories concept. The focus is on the
user-facing aspects of the concept. Implementation challenges and
semantics are only discussed in passing. So far, no implementation
of the FAD concept exists.
The paper is organized as follows: In the next section, Treating files
with structured data as directories, I describe the basic concept of
FAD. In the Related Work section, I give an overview of similar
approaches and previous discussions of the concept. In the Usage
Examples section, basic workings and versatility of the proposed
approach are demonstrated. Afterwards I discuss Advantages and
Limitations and present an outlook on Future Work.

2 TREATING FILES WITH STRUCTURED
DATA AS DIRECTORIES

Files provide an universal interface to data. Operating systems pro-
vide APIs and basic tools for file administration. Many program-
ming languages offer support for file reading and writing. Most
applications allow accessing files.
I propose to provide a unified interface to structured data within a
file by representing such a file as (virtual) directory and the struc-
tured data as subdirectories and subfiles. This allows for arbitrary
applications to read andwrite structured data within arbitrary files
without the need to understand the file format.
The files as directories concept (FAD) proposed in this paper has the
following defining properties:

• Some or any files on a computer can also be accessed as if they
were directories - such files are called dir files in the remainder
of the paper.

• Thedirectory tree under a dir file represents one or more views
on the structured data within the dir file.

• The files in the directory tree represent individual elements of
the structured data. Some of them may also be accessed as dir
files themselves.

The FAD concept could also be formulated as directories as files
(DAF): Some directories can be treated as if they were files. These
files contain a representation of the directory contents e.g., as plain
text or in a structured file format.

2sometimes also called file as directory (singular); in this paper, both variants are
treated as synonyms.

Considering, for example, a simple spreadsheet stored in a CSV file
called my.csv, the following operations would be possible if my.csv
were a dir file:

Listing 1: Accessing dir files
$ cat my.csv
animal ,legs
lion ,4
snail ,0

$ ls -la my.csv/
rows/
cols/
.metadata/

$ cat my.csv/rows/0
animal , legs

$ ls my.csv/rows /0/
cols/

$ echo "parrot , 2" > my.csv/rows/3
$ cat my.csv/cols/0
animal
lion
snail
parrot

The semantics of the directory structure have been arbitrarily cho-
sen for the examples presented in this paper. In order to use FAD
in practice, coherent, intuitive, and robust semantics would need
to be developed.

3 RELATEDWORK
There already exist a few lightweight, non-generic implementa-
tions of the file as directory (FAD) concept: archive files (e.g., using
the PKZIP file format) are an obvious example of files containing
other files and directories. On all major desktop operating systems,
the default file managers allow opening archive files as if theywere
directories.3 A similar approach is chosen for audio CDs (which
are neither files nor directories) in some file managers. When the
user ‘enters’ the CD icon, the file manager shows a list of the audio
tracks. These can be copied to another drive, whereby the CD au-
dio is automatically and implicitly converted into PCM WAV, MP3
or other formats on copying. In both of these cases, the representa-
tion as a directory tree is provided and implemented by the (GUI)
application, not by the operating system itself.
In the Plan 9 operating system, specialized filesystems present
structured data as directory trees. For example, upasfs4 represents
emails as directories:

“Each message in the mailbox becomes a numbered
directory in the mailbox directory, and each attachment
becomes a numbered directory in the message directory.

3e.g., Windows Explorer, macOS Finder, Dolphin (KDE), Nautilus (Gnome), or Mid-
night Commander (cross-platform). On Linux, A Virtual File System (avfs) is a FUSE-
based filesystem in userspace which allows for accessing files within an archive or
on the network via a special syntax (/home/user/archive.tar.gz#ugz#utar
/path/file).
4http://plan9.bell-labs.com/magic/man2html/4/upasfs

http://plan9.bell-labs.com/magic/man2html/4/upasfs

Files as Directories <Programming’18> Companion, April 9–12, 2018, Nice, France

Since an attachment may itself be a mail message, this
structure can recurse ad nauseam.”

Plan 9 does not implement FAD, however, as files can not be ac-
cessed as directories. The raw email file is simply placed into the
message directory together with files containing subject, sender,
etc.
Finally, the FAD concept presented here from a user / application
perspective has been discussedwithin the Linux kernel community
multiple times with a focus on implementation challenges:
In 2004, Hans Reiser implemented FAD in his Reiser4 filesystem.
Pseudo files5 located in a /metas/ top-level directory could hold
metadata in files that also acted as directories (i.e., could be ac-
cessed both using the read and readdir system calls). Kernel devel-
oper Christoph Hellwig argued against inclusion of Reiser4 in the
Linux kernel due to several fundamental problems that might be
caused by the unexpected behavior of files that also appeared as
directories.6. A long discussion ensued7. So far, the Reiser4 filesys-
tem has not been included in the Linux kernel. Jamie Lokier re-
named the thread and argued in “The argument for fs assistance
in handling archives”8 that it would be more convenient for the
user to explore archive files with the cd command, and that treat-
ing archives as directories might be more time- and space-efficient
on the filesystem level.
In April 2007, Theodore Tso described an inherent limitation of
filesystems that also applies to FAD9:

“One of the big problems of using a filesystem as a DB is
the system call overheads. If you use huge numbers of tiny
files, then each attempt read an atom of information from
the DB takes three system calls — an open(), read(), and
close(), with all of the overheads in terms of dentry and
inode cache.”

In May 2007, Miklos Szeredi argued for FAD independently of the
Reiser4 debate10. He suggested to use FAD for archive files, “ac-
cessing streams, resource forks or extended attributes”. He also
provided a proof-of-concept kernel patch that utilized avfs. While
a constructive debate ensued, FAD support was not integrated into
the Linux kernel.
To my knowledge, FAD is not supported by any other major oper-
ating systems. However, FAD shares some properties with other
implementations and concepts. The NTFS filesystem for Microsoft
Windows allows files to contain multiple Alternate Data Streams,
however it does not allow these to be subdirectories. HTTP allows
for treating URLs with a trailing slash differently than URLs with-
out one and allows for content negotiation. The REST paradigm
already implements parts of the semantics of FAD. As most exist-
ing applications do not natively support accessing files via HTTP
PUT requests orWebDAV, HTTP/REST is not a practical substitute
for FAD.

5https://web.archive.org/web/20070921094112/http://www.namesys.com:
80/v4/pseudo.html
6https://lkml.org/lkml/2004/8/24/220
7http://yarchive.net/comp/linux/reiser4.html
8https://marc.info/?l=reiserfs-devel&m=109406945802488
9http://yarchive.net/comp/linux/reiser4.html
10https://marc.info/?l=linux-fsdevel&m=117986025907108

4 USAGE EXAMPLES
Commonly suggested uses for FAD are archive files (.zip, .tar.gz,
…) and config files. However, FAD may also be used for work-
ing with office documents (text documents, spreadsheets, presenta-
tions), XML/HTML files, emails (including MIME-encoded attach-
ments), calendars, multimedia files, or device files representing the
state of a system (e.g., connected USB devices). Windows and wid-
gets in a graphical desktop environment might also be represented
as directory trees [2,3].
The following examples use a basic UNIX shell syntax for demon-
strating two relatively straightforward uses of FAD. In the first ex-
ample individual elements of a configuration file are accessed.

Listing 2: Accessing structured textual data via subfiles
$ cat foo.ini
[Section 1]
val =123
[Section 2]
val =333
val2="tree"

$ ls foo.ini/
Section 1
Section 2

$ cat foo.ini/Section\ 1
val =123

$ cat foo.ini/Section\ 1/
cat: foo.ini/Section\ 1: Is a directory

$ ls foo.ini/Section\ 1/
val

$ echo "124" > foo.ini/Section\ 1/val

$ cat foo.ini/Section\ 1/val
124

In the following example individual pixels of an image file are mod-
ified.

Listing 3: Reducing the brightness of an image via its sub-
files.
$ ls -la foo.jpg/
cols/
rows/
pixels/
formats/
.metadata/

using a hypothetical script 'subtract.sh '
that gets value and pixel file passed
as parameters:
$ for px in foo.jpg/pixels/px*;\

do subtract.sh 40 "$px"; done

FAD also facilitates conversion from one file format to another.
Users do not need to know which formats are available or which
converters to use. Available formats can be explored e.g., by read-
ing the directory formats/. A file can offermultiple representations

https://web.archive.org/web/20070921094112/http://www.namesys.com:80/v4/pseudo.html
https://web.archive.org/web/20070921094112/http://www.namesys.com:80/v4/pseudo.html
https://lkml.org/lkml/2004/8/24/220
http://yarchive.net/comp/linux/reiser4.html
https://marc.info/?l=reiserfs-devel&m=109406945802488
http://yarchive.net/comp/linux/reiser4.html
https://marc.info/?l=linux-fsdevel&m=117986025907108

<Programming’18> Companion, April 9–12, 2018, Nice, France Raphael Wimmer

of its contents. However, not all conversions might be sensible or
possible. Invalid conversions can be blocked by returning an error
on write access to the subfile:
Listing 4: Converting images from SVG format to BMP for-
mat, and replacing the content of one image file with an-
other.
$ cp image.svg/formats/image.bmp ./foo.bmp

$ cp foo.bmp image.svg/formats/image.bmp
cp: write error: Invalid argument

$ cp foo.bmp image2.jpg/formats/image2.bmp

As each of those subfiles offered by the converting file system in
formats/ may in turn offer other conversion formats, file conver-
sions can also be chained together:

Listing 5: Conversion file systems allow e.g., converting an
image into an audio file and playing it.
$ playsound foo.jpg/sizes /100 x72/formats\

/foo.bmp/pixels /10:10 -20:70\
/formats/foo.int_array/formats\
/foo.wav

5 POTENTIAL ADVANTAGES
Everything that would be made possible by the FAD concept can
already be implemented by using specialized libraries, APIs, and
programming languages. However, FAD might offer a few advan-
tages for end-user programmers and software developers.
Learnability. End-user programmers might benefit from a
reduced set of methods they need to learn and apply. Instead of
learning how to use a set of different APIs, they can focus on
algorithmic aspects of the problem.
Explorability. Instead of reading API documentation on how to
access certain information in a file, they can interactively explore
the available options on the command line or a file manager. If they
know which value a certain property has at the moment, they can
use a full-text search in order to find the property’s location in the
subdirectory tree.
Composability. As subfiles can represent even complex data
types (such as compressed images, 3D meshes, or audio wave-
forms) as a tree of simple values, generic tools following the
UNIX pipes and filters paradigm can be chained and combined to
transform and modify this data. Users can also choose the most
appropriate programming language for a given sub-task.
Support for ‘legacy’ applications. FAD allows for integrating
‘legacy’ applications into workflows. For example, a proprietary
application that can only read and write images in TIFF format
could be pointed to the TIFF representation of a JPEG file (foo.jpg
/formats/foo.tif).
OS support. By using FAD for accessing structured data, develop-
ers benefit from operating system features, such as access manage-
ment, mounting files over a network, additional OS-specific man-
agement tools
Concurrent access. Two or more users or applications might op-
erate on data in the same file as long as the accessed elements
do not overlap or interact with each other. For example, one user

might edit an image within a slideshow while another user simul-
taneously adds text to another slide.
Implementation issues of FAD that limit the usefulness of these
features are discussed in the next section.

6 LIMITATIONS AND IMPLEMENTATION
ISSUES

Asmultiple authors on the Linux kernel mailing list have argued, it
is not trivial to implement FAD in a robust and consistent way on
existing operating systems. In the following I describe some of the
challenges that would need to be addressed when implementing
FAD.
A major issue is backwards-compatibility with legacy applications
that expect an object in the file system to be either a file or a di-
rectory - and not both. Furthermore, FAD might reduce I/O per-
formance and increase storage requirements because data in sub-
files would need to be extracted from a file and re-integrated into
it transparently. Multi-level caching might be needed to mitigate
such performance losses.
Sensible semantics and structures of the directory trees for each file
format need to be found. In at least some cases, the file/directory
metaphor might break or can not replace an API. For example, a
complex API call with multiple parameters might be difficult to
translate into a directory structure.
If file operations do not succeed, the user might only get a much
more ambiguous error message than if they had used a specialized
API for accessing the data.
Automatic conversion between file types is limited by conversion
losses. For example, it might be sensible to provide access to a
bitmap version of a vector graphics image via bird.svg/formats

/bird.bmp. However, a bitmap image written to this subfile could
not be losslessly converted into a vector graphics image.
Finally, care needs to be taken when accessing data with an
inherent ordering such as characters, words, and lines in a text file
via FAD. While a directory also stores the order of its files, tools
and programming languages APIs might implicitly sort these
entries alphabetically, removing important information about the
file’s structure.
Furthermore, there is a lack of examples of specific use cases,
where FAD would bring major benefits over existing approaches.
Overall, while I am confident that many of these challenges can be
addressed in an actual FAD implementation, trade-offs and design
decisions will need to be made that will reduce the simplicity of
the proposed concept.

7 FUTUREWORK
In this paper I have presented files as directories (FAD), a generic
concept for providing access to structured datawithin files through
virtual subdirectories and subfiles within these files. I have pre-
sented related work, abstract semantics, and a few simple use cases
illustrating this concept. While FAD might offer quite a few ad-
vantages for end-user programmers, many implementation details
need to be figured out. As next steps, it would be necessary to
identify sensible semantics for the directory structures for differ-
ent file formats. This might be done using user elicitation studies
and informed by collecting further uses cases. Furthermore, a more

Files as Directories <Programming’18> Companion, April 9–12, 2018, Nice, France

thorough investigation of implementation issues and approaches
is needed. An initial prototype might be implemented based on
HTTP/REST or FUSE and a custom translation shell.
It might turn out that FAD does not offer any advantages in prac-
tice or can not be implemented robustly. In any case, the FAD con-
cept might provide ideas that extend the vocabulary and design
space available to developers and programming language design-
ers.

ACKNOWLEDGMENTS
I would like to thank the reviewers and participants of the Salon
des Refusés for their valuable and friendly feedback. This project
is funded by the Bavarian State Ministry of Education, Science

and the Arts in the framework of the Centre Digitisation.Bavaria
(ZD.B).

REFERENCES
[1] Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six
learning barriers in end-user programming systems. In Visual Lan-
guages and Human Centric Computing, 2004 IEEE Symposium on,
199–206.
[2] Rob Pike. 1991. 8 ½, the plan 9 window system. In Proc. AUUG
’91, 231–239.
[3] Raphael Wimmer and Fabian Hennecke. 2010. Everything is
a window: Utilizing the window manager for multi-touch interac-
tion. In Workshop ”engineering patterns for multi-touch interfaces”
in conjunction with ACM EICS 2010.

	Abstract
	1 Motivation
	2 Treating files with structured data as directories
	3 Related Work
	4 Usage Examples
	5 Potential Advantages
	6 Limitations and implementation issues
	7 Future Work
	Acknowledgments
	References

