
Critique of ‘Semprola: A Semiotic Programming Language’

ANTRANIG BASMAN, Raising the Floor - International, England
We supply a critique of the paper Semprola: A Semiotic Programming Lan-
guage, suggesting directions in which its work of bringing semiotics to
programming can be refined, and supplying opinions on areas where it may
be refounded.

1 INTRODUCTION
Semprola: A Semiotic Programming Language by Sharpe presents
a novel reframing of the task of programming languages, persis-
tence and distributed architectures to take account of the essentially
contextual nature of all symbolic expressions, not to say meaning
itself.
This paper aligns strongly with our goals for the workshop in

seeking to promote alternative paradigms for computation, and to
establish connections with philosophical and semiotic traditions.
The material in section 2.1, “Let’s assume there’s just one ontology”
frames a pervasive and deep-rooted problemwith the underpinnings
of virtually all existing programming languages and all persistence
technologies. It argues for the importance of allowing multiple,
cooperating and related ontologies to represent a design. Software
would be much less punishing to the public if developers spent more
time reading material like this and thinking of ways to support
such ontological plurality. Part of the reason, of course, is that it is
somewhat technically difficult to do so — but no more difficult than
many of the towering technical achievements of computer science.
A more important part of the reason is that such work falls into an
ontological “blind spot” of engineers and scientists, a problem that
this paper does much to dispel.

This critique will focus on some areas where the work of bringing
semiotics to programming can be refined, and give some opinions
about areas where this work could be refounded.

2 PROBLEM OF FIXING AN ONTOLOGY
Linked central problems facing a successful semiotic programming
(SP) system are that in most realistic contexts an ontology cannot
be unambiguously fixed at the time of an author’s expression, and
further, that ontologies themselves could not be expected to have
separable identities with universally intelligible names. In section
4.7, the author states

. . . the creation of the sign does not just depend on the
content of the signifier that was captured at “author
time”, but also on the current content of the ontological
space and user’s context in which the sign will exist at
“use time”.

This implies that any such useful content could indeed be captured
at author time — that is, that one could expect an author to be able
to give any clear account of which ontology, if any, a particular
sign usage should be referred to. Figure 1 shows an interesting
such “confused ontology” resulting from variant usages of the term
“knitting”. One definition (from the OED) has it as

Author’s address: Antranig Basman, Raising the Floor - International, London, England,
amb26@ponder.org.uk.

Fig. 1. A confused ontology — perhaps one ontology, or two

The formation of a fabric by looping

whereas another (from dictionary.com) has

To make (a garment, etc.) by looping and entwining
(yarn, esp. wool) by means of long eyeless needles or
by machine

The set of actions designated by one definition is strictly nested
within the other. In terms of this structuring, this situation is identi-
cal with one referenced in the paper in section 3.1, that the French
word “mouton” can designates what in English can be resolved as
two separate cases, “sheep” and “mutton”. However, this situation is
inherently more problematic, because whilst a speaker of French is
typically aware at the point of speaking that their words should be
referred to the French ontology1, and their hearers agree in this, the
user of the signifier “knitting” may well not be conscious at the time
of speaking that their speech should be attached to one ontology
or another, or even that there might be more than one potential
ontology in play, and furthermore it is not particularly clear from
the structure of figure 1 how many ontologies there should indeed
be that cover this terrain, and if there are, what names could be
given to them that would result in their identities being intelligible
to anyone who wished to resolve the signifier.

From the experience of this author, the fact that it is possible for
expert knitters to happily sling around the term “knitting” without
the slightest awareness of an ontological problem, and that they and
their hearers may happily communicate on this basis for decades
without confusing each other, must be counted one of the miracles of
human cognition. Any successful SP system will also have to handle
such situations gracefully, which implies that it must be possible to
bandy signifiers indefinitely which never, from the point of view of
the authors, become definitively attached to one ontological space
or another. This implies the need for at least one more level of
indirection in the system, beyond the one the author identifies in
footnote 7, “So a simplified view of SP is that it introduces another
layer of indirection from the variable to the referred to value.”.

1Barring strange mishaps such as that of Moliere’s hero of Le Bourgeois Gentilhomme
who had been speaking prose for more than forty years without knowing it.



: • Antranig Basman

3 PART-WHOLE DISTINCTION PROBLEMS
More profound ontological problems arise when different observers
disagree about the boundaries and multiplicity of the activities or
objects forming the referents. Still worse, if these boundaries do not
nest properly.
Further text in section 4.7 reads:

Note too that SP signs can refer to more than one object
across more than one ontological space. The idea of this
is that different objects might at best at representing
different aspects of the real referent.

This harbours an even more profound ontological problem — that
observers might even be capable of agreeing on what should be the
“real referent” — or how many of it there are, where it is, where
it starts and stops. Figure 2 shows an elementary version of this
problem. Boundaries have been drawn separately delineating a man
and a horse —which another observermay consider a single referent,
“cavalry”2. Yet a further observer may consider that the referent of
“cavalry” is the complete collection of men on horses shown. How
could these different observers be put into correspondence? Some of
them use the same word, and some of them use different words, but
yet they are all addressing the same underlying situation, and an
effective semiotic or ontological system should be able to account
for the discrepancies between their view of it, and allow them to
relate with one another.

This is nonetheless a simple example of this problem, where the
boundaries of the objects of interest are properly nested. The natural
world, for example, abounds in much more profound problems. It is
interesting that the author picks as a central example of a signifier
“Tree” since this apparently harmless term can lead us into the
deepest thickets. Consider for example,

• The mychorrhizal networks which surround the roots of al-
most all trees. These may be attached to a single tree, or join
collections of them. If they are undisturbed, they will be at-
tached to the tree for its lifetime, and used to route nutrients
to and from the tree to suitable targets in the environment.
Should these be accounted for as a component of the tree or
not?

• Suckers which grow from the base of trees. These are genet-
ically identical to the tree and generally attached to it, but
could be (and sometimes spontaneously become) detached
and quickly become viable trees in their own right. Is this a
situation of multiple trees or a single one?

• Trees may engage in clonal reproduction. This produces what
appear to be multiple trees, but are all genetically identical,
and may become widely dispersed. An extreme example is
“Pando”, an aspen grove in Utah which consists of 47,000
stems covering more than 100 acres, which has a root system
which is now over 80,000 years old. Pando is considered “an
organism”, but is it more than one tree?

Further example abound in contexts of perception. Korte’s law in
psychophysics [3] describes the phenomenon of apparent motion
of two successively presented stimuli. Under some conditions, for
example, two discretely presented lights may be perceived as a

2This example is taken from [5]

Fig. 2. A confused referent — perhaps one object, or two

single moving light. Different observers would then disagree not
only about the multiplicity but also the nature of the referent of
“the light”. Departing from examples backed directly by physics,
metaphorical or artistic uses of signifiers raise problems which just
multiply from here.
Whilst it is not explicitly referenced, the author’s work falls in

the tradition of work descended from [2] which is the root of a
wide literature on techniques for “subjective” or otherwise “context-
oriented” programming. An element in common between members
of this tradition is that object boundaries are sacrosanct, and whilst
different observers may disagree on the nature and behaviour of
objects in question, they may not disagree on their multiplicity and
relative arrangement. Semprola may be seen within this tradition
through its reliance on SPUIDs, unique identifiers which are used
to correlate whether different signifiers are bound to “the same
referent”. This problem is referred to in [1] as “artefact boundary
intention”, a kind of “excess intention” which our current means of
expression force us to imbue our designs with. This is a profound
problem to which this author is aware of no effective and mature
solutions, but some directions towards an approach are sketched in
the next section.

4 INDIRECTION THROUGH STATE
This author’s opinion is that (at least) two further levels of indirec-
tion (as well as probably some changes in modelling of primitives)
need to be added to produce a successful ontological system. These
comprise

• The indirection through “shards” of ontologies which may
be opportunistically assembled and disassembled by ad hoc
communities of shared interest.



Critique of ‘Semprola: A Semiotic Programming Language’ • :

• An indirection through the realm of “state”.
These reflect a distinction of Whitehead [7]’s, between the realm

of Actuals (housing what he named “Actual Entities”) or “extended
realm”3, and the realm of Potentials.
By modelling the extended realm primarily as initially uninter-

preted state, one can hope to establish alignment between apparently
mismatched ontologies by indirection on the coordinates of this
state. Naturally this forms just another ontology in itself, since there
is no reason to expect different observers to agree on either the co-
ordinates or their contents, but by making this extended realm as
thinly interpreted as possible, one can hopefully push ontological
disputes into the periphery of the system, as well as more easily ex-
pressing transformations or lenses mapping views or lenses on this
state between observers. This implies that a problem identified by
the author, that of the use of “naked data” and “unitless quantities”
in section 2.3, is less pernicious than it might be. In practice, we
live in a sea of unitless quantities, and by explicitly surfacing this
at one level of the system design we can allow for a properly free
association of quantities and other metadata with their referents.

In terms of prior art relating types and dimensions, several type
systems do permit representation of rich dimensional information
— e.g. the Haskell “units” package, or the F# “Units of Measure”
metadata4. The issue, more clearly, is that it is difficult to transmit
suchmetadata or type information in an intelligible way— especially
to a system based on a different linguistic or type foundation. This
author believes that such information should itself be folded back
into the base representation of pure state in the system, so that it
may be transmitted and processed by systems with varying levels of
insight into its structure. Semprola has the required uniformity in
that all state is represented in the same terms, but still too much of
the interpretative machinery is bound into the protocols necessary
to transmit and decode state.

5 CONFLICT RESOLUTION
The preceding sections make it clear that “ontological dispute” or
disagreement needs to be not only tolerated but actively welcomed
into the system in order for it to perform a harmonious and pro-
ductive function in real human communities. In light of this, the
short shrift given to this process in the paper is problematic. In
section 5.2 is the remark that an assignment which appears to be
into an ontology in which it is not permitted by the author might
“throw an error condition” — but this is not really viable, from the
point of view of either semiotics or usability. To start with, we have
the crucial ergonomics of making sure the system as a whole never
destroys user data — a pernicious property of virtually all traditional
software which it has to be one of the crucial goals of SP to eradicate.
Secondly, there is the issue that “setting the property of an object
in a particular space” might well not be a suitable primitive for an
overall SP system. A system designed around human cognitive er-
gonomics, as promised by its foundation on semiotics, would more
appropriately allow all updates of state by some actor to be hon-
oured in some arena where they will (initially) definitely succeed.

3Following Descartes, the res extensa
4described at https://en.wikibooks.org/wiki/F_Sharp_Programming/Units_of_Measure
which, incidentally, cites exactly the same well-attested Mars Climate Orbiter disaster

These updates would then have the option to propagate to one or
more linked spaces in accordance with some previously established
ontological policies. This follows normal conversational practice
where messages from one’s fellows that appear ontologically con-
fused or seem to be attempting an ontological overreach are not
summarily rejected as being in error, but are retained perhaps in
hope of future disambiguation or qualification, but at least in service
of ordinary decency.
To this author, the thing called “conflict resolution” has to be

positioned at the very centre of such a system, and the system
should be capable of persisting indefinitely in a state where there
are fundamental inconsistencies, and should not register these as
“error conditions” as such —merely a metric that users of the system
might care to interest themselves in from time to time, and if they
are so minded, to reduce.

6 CODE AND EXECUTION
Section 2.4 weighs in effectively against the predominance of func-
tions and the lambda calculus as the central organising unit of
implementations. Indeed, the function application metaphor for
computation is one of the central evils of software engineering.
However, insofar as we have any “code” in a system implementation,
there are worse ways of packaging it than as pure, free functions.
This issue of “what is and what is not code” is a duality which

could be explored more thoroughly. Section 4.6 argues that there
will be “the” SPVM which will execute its “instruction codes” but
it seems far more likely that any system such as Semprola could
only ever succeed through explicitly planning for a plurality of
implementations, processing ontologies through variant means and
at varying levels of fidelity. Expecting something as complex as
an SPVM to be hosted within every language system and virtual
machine in the world is probably expecting too much — and it
would be most valuable if Semprola’s description could separate the
taxonomy of signs and public representations (e.g. agreement on
what is “hot”, “cold”, what can be a SPUID, etc.) from any particular
execution model. We look forward in a future paper to seeing the
details of how the SPVM execution model works and how it might
be usefully subsetted by agents who wish to implement support at
some intermediate level.

7 LEAKINESS CONSIDERED BENEFICIAL
The following connection in section 5.1 seems a “loose joint”:

Indeed, as the runnable nodedges with SPVM instruc-
tions are part of the SP graph it will be possible to write
such compilers in Semprola. In this kind of way the SP
environment tries as hard as possible to avoid being
a “leaky abstraction” where new bits would regularly
need to be written in C.’

The obsession with completely homogeneous systems, and ones
which if necessary could be written in themselves, is a kind of “will
o’ the wisp” which has led generations of language designers to
produce otherwise highly worthy but ultimately unsuitable systems
such as Lisp or Smalltalk. I think that designers should be more
willing to entertain the idea that, whilst being perhaps a little “leaky”,
a heterogeneous system could be a superior one. In order to make

https://en.wikibooks.org/wiki/F_Sharp_Programming/Units_of_Measure


: • Antranig Basman

our systems tractable from the end-user programming point of view,
we need to vastly reduce their computational expressive power,
and, quite certainly for example, prevent them from being Turing
complete. It is terribly impressive to be able to implement a system
in itself, but in the end a property which marks it as a certain failure.
After all, the whole point of SP is that we expect our ontologies to
be “leaky”, but hopefully, ultimately, in a bounded and productive
way — why not plan for our implementations to be leaky as well.

However, Section 5.1 breaks some highly valuable ground in start-
ing to reposition the role of “language” in the overall ecology of
users and authors. Whilst languages remain “single ontology” con-
structs, the dialogue which may be had with them will be stifling,
authoritarian and limited [6]. Section 5.1 usefully starts to speculate
about other roles which the things once known as languages might
play in a truly pluralistic dialogue, but this section and the rest of
the paper doesn’t go far enough in thinking about how to disinter-
mediate the current “package deal” of programming language, based
on the primacy of source code, with the primary audience being the
development tool chain. There are lots of promising threads in the
paper, primarily the developing split between dead and live artefacts,
and the resulting public data model, that could be developed further
in order to explode this package deal.

8 FURTHER TRADITIONS
The introduction of philosophical techniques into our interaction
withmachines is highlywelcome, but semiotics is just one of a family
of techniques for assigning and assessing meaning. It can be seen
as just one of a set of “analogy-forming techniques” which form
various philosophical traditions. This author would particularly
welcome an extension of these ontological modelling techniques
into, for example, Lakoff and Johnson [4]’s tradition of meaning
generated through metaphor.

9 SPECULATIONS ON PERSISTENCE
It would be valuable to investigate whether there any persistence
technologies which are more or less suited to the storage and query
of the vast distributed graph which SP will operate on. We should
establish what properties will require to be optimised by such an
SP substrate, and how these properties compare to those which
the goals in the more or less mainstream persistence technology
have led them. Graph databases such as Neo4J or OrientDB are
aimed at related problems of storing relatively unstructured, large-
scale knowledge graphs but it is unclear whether their aims align
well with the needs of semiotic programming and its distributed
execution.

10 CONCLUSION
Semprola breaks vital ground in bringing subjective interpretations
of user data to computing, in the form of a semiotic data model
and execution scheme. Further expansion of its model, in terms of
dealing with everyday ambiguities that arise from problems such as
unfixed ontologies and part-whole distinctions, will be necessary to
turn it into an effective user tool. We eagerly await publication of
further details of its data structures and the reasoning which has
underpinned their development, and also the proliferation of variant
subjective programming systems based not only on semiotics, but
also on alternative philosophical models such as metaphors and
devices drawn from critical theory.

REFERENCES
[1] Antranig Basman. 2017. If What We Made Were Real. In Proceedings of the Psychol-

ogy of Programming Interest Group.
[2] William Harrison and Harold Ossher. 1993. Subject-Oriented Programming: A

Critique of Pure Objects. 28 (01 1993), 411–428.
[3] Adolf Korte. 1915. Kinematoskopische Untersuchungen [Cinematoscopic investi-

gations]. Zeitschrift für Psychologie (1915), 193–296. Issue 72.
[4] George Lakoff and Mark Johnson. 1980. Metaphors We Live By. University of

Chicago Press.
[5] David Marr. 1982. Vision: A Computational Investigation Into the Human Represen-

tation and Processing of Visual Information. Freeman.
[6] Alvaro Videla. 2018. Lector in Codigo or The Role of the Reader. Proceedings of

<Programming ’18> Companion, Salon des Refusés (2018).
[7] Alfred North Whitehead. 1929. Process and Reality. Free Press.


	Abstract
	1 Introduction
	2 Problem of Fixing an Ontology
	3 Part-Whole Distinction Problems
	4 Indirection through state
	5 Conflict Resolution
	6 Code and Execution
	7 Leakiness Considered Beneficial
	8 Further Traditions
	9 Speculations on Persistence
	10 Conclusion
	References

