
Critique of ‘Files as Directories: Some Thoughts on
Accessing Structured Data within Files’ (2)

Stephen Kell
Department of Computer Science and Technology

University of Cambridge
Cambridge, United Kingdom

stephen.kell@cl.cam.ac.uk

ABSTRACT
In this critique I argue that the motivations and direction of
the ‘files as directories’ idea are sound, but the conceptual
difficulties are considerable yet non-obvious, and are not
limited to those identified by the author. I highlight a selection
of concerns, including Unix’s latent pluralism, the blurred
boundary between naming and computation in languages,
and issues of bidirectionality, semantic diversity and support
for economical migration.

CCS CONCEPTS
• Software and its engineering → File systems man-
agement; Abstraction, modeling and modularity ; • Human-
centered computing → Command line interfaces;

KEYWORDS
Unix, pluralism, Plan 9, Smalltalk, files, objects

ACM Reference Format:
Stephen Kell. 2018. Critique of ‘Files as Directories: Some Thoughts
on Accessing Structured Data within Files’ (2). In Proceedings of
2nd International Conference on the Art, Science, and Engineering
of Programming (<Programming’18> Companion). ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3191697.3214325

1 INTRODUCTION
Raphaël Wimmer’s ‘Files as Directories’ [Wimmer 2018] is
an exploratory piece which considers the possibility of further
generalising the Unix-like filesystem abstraction such that
it exposes structure within what would presently be indi-
vidual files, serving this structure in the form of a directory
tree. Accesses to this tree, using the conventional filesystem
interfaces and/or tools targeting them, could achieve what
currently requires use of format-specific library APIs. In this
way, structured data could be made more accessible, espe-
cially to end users or inexperienced programmers. Such access
to data might also prove more straightforward even for expert
users.

<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Copyright held by the owner/author(s). Publication rights
licensed to the Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record
was published in Proceedings of 2nd International Conference on the
Art, Science, and Engineering of Programming (<Programming’18>
Companion), https://doi.org/10.1145/3191697.3214325.

I found myself in broad agreement with the aims of this
work. This critique analyses and complements the arguments,
picking out somewhat differing emphases and proposing some
slightly different conclusions. In short, it contends that the
true difficulties with realising this concept are relatively non-
obvious and have been downplayed in the author’s presenta-
tion. I offer my perspective not to criticise the idea, which
I hold to be a good one, but to help focus attention on fu-
ture efforts most likely to make it a success. I begin with a
brief recap of the strengths and weaknesses of the concept,
contrasting the author’s perspectives with my own.

2 CONCEPTUAL STRENGTHS
As evident in the earliest presentations [Ritchie and Thomp-
son 1974], the filesystem in a Unix-like operating system is a
space of interaction between the user and the system. The
most basic Unix skills involve use of the shell to create and
control programs, including the use of named files. The filesys-
tem is also a space of interaction between distinct programs,
even outwith the user’s direct control, reading and writing
files that are (usually) looked up by name. By bridging the
programmatic and the interactive, the filesystem occupies a
powerful position. The more objects are exposed through the
the filesystem, the more both programmers and interactive
users are empowered. (These populations are, of course, far
from disjoint.)

It is therefore fitting that the author arrives at the issue
of filesystems from the viewpoint of interaction in general,
and end-user programming in particular. The transition from
interactive use, via customisation using textual notations, to
fully fledged programmer, is well observed. So too are the
author’s examples of structured data which could usefully be
exposed as directory structures within the ‘files as directories’
(FAD) concept: the copy-paste clipboard; comma-separated
(CSV) records; section-structured textual configuration files;
e-mail messages; and JPEG images. Using these, he identi-
fies problems with status-quo practices around client library
APIs (e.g. libjpeg, for the JPEG example): customisation
barriers faced by end users; limited API availability when
working with a given kind of structured data, only through
language-specific APIs; limited learnability of APIs by end
users; limited forwards compatibility, cf. the desire for old
applications to support new file types without modification;
and limited interactive explorability of structured data. All
of these would be ameliorated if the relevant structure were
served as a filesystem rather than via APIs.

https://doi.org/10.1145/3191697.3214325
https://doi.org/10.1145/3191697.3214325


<Programming’18> Companion, April 9–12, 2018, Nice, France Stephen Kell

Some of the other motivations listed are less convincing.
The suggestions that access control and network transparency
are acquired ‘for free’, or that concurrency is aided by this
arrangement, raise more questions than they answer. If a
file format does not provide for access control, the metadata
will require separate storage; alternatively, if it does provide
notions of access control, a mapping is required between the
format’s model and the system’s, with ensuing complexity.
Network transparency, while desirable, is hard to achieve:
effective network-transparent abstractions require a carefully
crafted partitioning of operations and state across different
locations in the network, to mitigate high variances in avail-
able latency or throughput (echoing the latency concerns in
the author’s own quotation of Theodore Ts’o). Regarding
concurrency, even if disjoint parts of a file are being accessed,
conflicts are likely, since binary file formats often include
whole-file layout or summary information such as a ‘length in
bytes’ field describing a variable-length sequential structure.
Even under updates to disjoint elements of that sequence,
a conflict arises on the necessary update to that summary
information. These problems, while far from insurmountable,
must be recognised as such.

3 CONCEPTUAL WEAKNESSES
In the foregoing dissection of the more doubtful strengths of
the proposal, a more general phenomenon is visible: that a
full implementation of the filesystem abstraction represents
a much more challenging programming assignment than an
ad-hoc API that is free to impose simplifying constraints.
Obviously there are also benefits to be reaped from such
an investment of implementation effort, in the form of a
much more flexible and uniform user-facing interface, but
the reward curve may or may not be favourable. Since, as it
stands, the proposal implies an invitation to rewrite client
libraries as filesystems, these economics matter (see §8).

This problem of mappings is recurrent: how to define a good
enough mapping, and transfer sufficient meaning through
it—including the avoidance of spurious transfers. Indeed, the
author notes this difficulty with respect to ‘sensible semantics’,
‘conversion losses’, error messages and ordered structures.

The author also cites composability, with reference to
the pipe-and-filter style. If more data were exposed in the
filesystem, would this engender a more compositional style
among clients? This is questionable, since pipes and filters in
Unix work over byte streams, not directory trees. Indeed, the
concept of ‘filesystem’ in Unix often packs together these two
rather different abstractions: a namespace-based file access
API dealing in hierarchical structures (files denoted by path).
and a descriptor-based read/write API dealing in distinctly
flat structures (files denoted by descriptor). There is an air of
equivocation to the argument here: if anything, compositional
programming, at least in the pipe-and-filter mode, appears in
fact rather easier with byte-streams (files) than with (files as)
directories, since one can pipe a byte-stream to a program
which interprets it. The nearest analogue with directories is
to create a succession of temporary trees which may be passed

by name to a client program. The latter moves away from the
expression-oriented effect-free simplicity of pipelines, towards
a style that brings the resource management complexity of
naming, creating and deleting the intermediate trees. (To
avoid these, one might quickly be tempted to encode such a
tree in a byte-stream format such as tar!) In the pipe-and-
filter case it seems that compositionality emerges not from
directory structure, but the insertion of expression-oriented
computation (piping to a program amounts to a function
application) interchangeably with storage (redirecting to a
file). The desired affordance appears to be not directories
per se, but the ability to swap straightforwardly between a
byte-stream and a directory ‘view’ of the data, depending on
what suits each stage of processing.

I’ll revisit three of the preceding conceptual challenges in
subsequent sections: the desirability of some pluralist notion
of ‘views’ that permit selection of appropriate abstractions
in appropriate contexts (§4, §6). the challenge of defining
mappings with semantic consistency (§7), and the necessity
of a favourable investment/reward curve in (more complex)
reengineering (§8). In so doing, we will also uncover a question
(§5) about what a ‘naming language’, such as the filesystem’s
language of pathnames, really is.

4 PLURALISM
The author anticipates several difficulties with realising FAD:
low-level compatibility issues, performance issues, semantic
limitations, poor error reporting, conversion losses, and loss
of ordering semantics. In the sections that follow, I will mostly
focus on an alternative selection of limitations, some non-
obvious, that I believe at least as important. I mention these
not because they render the idea unworkable—I don’t believe
they do—but to set out the design challenges they imply.

The first challenge is pluralism—a seldom-remarked yet
critically important property of Unix, as I have argued else-
where [Kell 2013]. Unix is pluralist partly by accident, thanks
to its minimalism. For example, by leaving the command
language out of the kernel, it permits many different shells
with their own built-in commands, and allows user to ex-
tend the command language simply by installing additional
binaries. Similarly, by omitting certain abstractions—such
as record-structured files, for example—it becomes naturally
amenable to multiple ways of breaking down the same data,
where no single way has dominance or favour. This is often
realised with pipelines, in which multiple programs may be in-
terpreting and reinterpreting the same data in different ways.
For example, even a very pedestrian pipeline might combine
character-wise (e.g. tr), line-wise (e.g. sed) and whole-file
(e.g. sort) operations in one go. Intervening commands (often,
again, tr or sed) might logically restructure the file again
and again by rewriting its delimiters or separators. And of
course, the support for many source languages arises from
avoiding any deep special favours to the implementers’ own
C language.

It seems reasonable that proposals seeking to extend Unix
should preserve these kinds of pluralism. Here we can consider



Critique of ‘Files as Directories’. . . <Programming’18> Companion, April 9–12, 2018, Nice, France

what this might mean for a file containing structured data.
At its simplest, a file named

/path/to/ file

. . . might be viewed as a directory simply by the designation

/path/to/ file /

. . . but then, by implication, there is a single interpretation
of that file as a directory. This rather follows GNU Hurd’s
‘translator’ concept1, in which a filesystem node has a stored
‘translator’ which may be set by the user, and otherwise
persists, but only has one value at any time. Giving favour
to a single interpretation, fixed by the administrator or file
owner, appears restrictive and is definitely not pluralist.2

Alternatively, one can take the approach of avfs3, which
uses filename suffixes like the following.

/path/to/ file #utar

Here ‘utar’ refers to a function which interprets the file as a
tape archive (tar) file. In other words, the choice of interpre-
tation has been left to the client, i.e. the user/programmer
naming the file. That choice is not free, however; a fixed
repertoire of such functions is defined by the AVFS system.
Arguably a conceptually cleaner design, and certainly one
that is both pluralist and the most ‘open’, would also permit
something like

/path/to/ file #/path/to/my/utar

. . . where a user-supplied interpretation is applied by ad-
dressing it within the filesystem, potentially itself by a FAD-
denoting expression. In other words, file-as-directory inter-
pretations become just another kind of object that may live
in the filesystem, much as shell commands did in the origi-
nal Unix design. Unlike command invocations, the result of
a FAD’s invocation is itself necessarily a named filesystem
entity.

5 NAMING LANGUAGES
What we have just seen is a transition from a lan-
guage whose phrases (pathnames) have a linear struc-
ture (/path/to/file) into one with a branching structure
(/path/to/file#/path/to/my/utar). The latter admits expres-
sions of the form ‘apply this to that’, which the former does
not. This tree structure appears to be a demarcation of tradi-
tionally non-computational ‘naming’ languages (pathnames,
selectors, coordinates) from more general computational ‘de-
noting’ languages (including human-facing programming lan-
guage, but also lambda calculus, SKI combinators, or any
Turing-powerful language). So-called ‘elegant’ designs seem
to select only one such application primitive each, whether
function call, beta reduction, or message send. The trajec-
tory of other designs has also been to migrate towards ever
1This is described at https://www.gnu.org/software/hurd/hurd/translator.
html as retrieved on 2018/5/10.
2Using out-of-band stored attributes to record such translator assign-
ments appears also a failure to unify around the filesystem; why are
these attributes not themselves simply files?
3A Virtual File System, a Linux-based open-source project active since
at least 2002 until the time of writing, at http://avfs.sourceforge.net.

fewer ‘verbs’: Plan 9 narrowed the interface of Unix in favour
of deeper namespaces (e.g. control files instead of ioctl()).
The REST conception of HTTP [Fielding 2000] advocated a
small collection of verbs (get, put, post, delete) while push-
ing semantic structure into the object space itself (making
more complex operations be nameable ‘resources’ in their
own right).

Another demarcation of naming languages from program-
ming languages might be the resource expectations: naming
languages in a storage-only filesystem necessarily denote ob-
jects that already exist in manifest form, so can be accessed
in time linear (roughly speaking) in the length of the name.
By contrast, given a phrase denoting a computed value, in
general we expect that value need not exist, and the process
of ‘resolving’ the name involves computing its manifestation—
for which the resource demands are highly variable.

It is unclear whether this distinction, between naming lan-
guages and (computational) programming languages, with-
stands an overriding concern for usability. A system in which
pathnames can be complex computational expressions is likely
rapidly to become in in which they actually frequently are,
perhaps in ways deleterious to comprehensibility and usability.
This contrasts with the linear simplicity of pathnames; since
much of the human population struggles to grasp even simple
hierarchical abstraction, this problem may be deeper than
most computer scientists realise. Nevertheless, the potential
orthogonality and expressiveness of a rich naming language
brings benefits as well as drawbacks. Are pluralism and ‘free
interpretation’ (to paraphrase FAD itself), taken together,
too much to pack into an intuitive, novice-friendly system?
This is a design question meriting considerable research on
its own.

6 BIDIRECTIONALITY
A further semantic issue is that of two-way data flow: reading
and writing through the same interface. Storage interfaces
permit this by definition. Can arbitrary files do so? For ex-
ample, can we create new files in our utar’d directory, hence
adding content to the archive? In general, such questions
imports the ‘view update’ problem of database lore [Furtado
and Casanova 1985], also studied in programming languages
research such as in the ‘lenses’ of Foster et al. [2005]. Con-
current updates complicate matters still further.

7 THE INEVITABILITY OF
METASYSTEMS

As the author notes, this trajectory of generalising the ‘file’
abstraction has been pursued before, notably in the Plan 9
operating system [Pike et al. 1991]. This refined and simpli-
fied the Unix filesystem interface considerably, extended it to
new depths of generality (embracing network protocols, win-
dowing system entities and more) and, overall, adopted the
serving and consumption of named files as the principal inter-
process communication model. File servers, being ordinary
user programs, had something in common with our sugges-
tion earlier that utar should simply be a program supplied

https://www.gnu.org/software/hurd/hurd/translator.html
https://www.gnu.org/software/hurd/hurd/translator.html
http://avfs.sourceforge.net


<Programming’18> Companion, April 9–12, 2018, Nice, France Stephen Kell

(or at least named) by the user. Operations not naturally
expressible on storage-style files, such as ejecting a disc or
launching a missile, would in Plan 9 be represented as ‘control
files’ with no payload state but on which reading or writing
some data, often as a request-response pair, would trigger
some arbitrary procedural action. Although powerful and
pragmatically convenient, such moves come at the expense of
semantic uniformity. What does it mean to copy a filesystem?
With plain old files it is obvious, but with such behaviourally
diverse entities, it is no longer clear—nor is taking a copy
any longer an obviously ‘safe’ operation (especially where
missile launchers are concerned). Even when one is limited
simply to structured data, not control files, non-local effects
such as integrity constraints (‘if X exists, Y must also exist’)
can stymie a generic copying algorithm that works fine on
files.

Modelling semantic diversity, and also commonality, is the
role of metasystems. Consider Smalltalk’s system of classes.
A class conveys how two objects behave alike, and also how
they may differ. A hierarchy of classes conveys (ideally) refine-
ment relations on these behavioural contracts. For example,
copying is only permitted for objects whose class defines a
method for that purpose. Such information clearly assists
in writing a robust generic copy. In a system of rich struc-
tured data, it seems inevitable that some sort of meta-level
interrogation should be necessary. Of course, the strength
of this approach is that both views are available. Like in
dynamic languages, in a filesystem world it is the ‘default’
base-level view that is the generic one, exposing similarity:
ordinary programming is simply sending messages to objects,
or invoking operations on files, all of which are a priori equiv-
alent. It is up to the meta-level, as a ‘splitter’, to supply
the distinctions, by capturing distinct classes of object. By
contrast, statically typed languages are ‘splitters’ at the base
level, with each syntactic phrase constructed inhabiting a
potentially distinct classification (static type). The role of a
meta-level interface is generally to recover commonality—for
example, iterating uniformly over all functions in a module,
in spite of their differing types, so acting as a ‘lumper’ (e.g.
to enable generative metaprogramming).

In the filesystem case, the basic abstraction is a ‘lumper’,
cutting universally across all objects, and it is only the meta-
level that splits by specialism. Although this is not so far
from a Smalltalk-like model, the notion of messages ‘under-
stood’ remains difficult: does a control file really ‘understand’
a write message, if its behaviour is nothing to do with writ-
ing? Whereas in Smalltalk this would happen only in rare
cases of coincidence (choosing the same message name for
semantically different operations), in a shoehorned filesys-
tem, whether Plan 9 or (to some extent) FAD, this happens
intentionally: ‘write’ is consciously overloaded with some sort
of distinct meaning. The potential for obscure, confusing
interfaces is therefore greater, and will require mitigations—
perhaps in FAD implementations (ensuring only write-like
operations are exposed as write()), or perhaps, more polymor-
phically, in clients: ensuring that a program such as cp, that
is trying to read or write files, is doing so with a uniform

notion of what those operations will do, and will abort on
divergence (or perhaps simply ignore divergent files). Such
tests for ‘divergence’ or ‘write-likeness’, if they are tractable
at all, will require considerable care at both specification and
implementation.

8 REPURPOSING EXISTING CODE
Given a world with FAD support, a naïve next step is simply
to ‘rewrite all the libraries’. Is it possible instead to recover
filesystem interpretations of files without rewriting huge vol-
umes of code? This is doubly important since, as I noted
earlier, a filesystem-like view of data is likely to present a more
complex, more general interface than some ad-hoc domain-
specific API, so a favourable investment/reward curve will
be necessary.

The ideal curve would offer an automated or semi-
automated path to migrate from client library to filesystem.
Although this is an ambitious goal, there is reason to be
cheerful. Recovering structure implicitly is a theme of much
under-represented research in disparate venues; a now-dated
selection springs to mind [Cozzie et al. 2008; Fisher et al. 2008;
Slowinska et al. 2010] and in the age of rapidly advancing
machine learning, there is considerable opportunity for new
techniques. Naturally, simply learning the desired logic in its
entirety would be the ideal, but more prosaically, learning
‘metaformat’-based descriptions, concisely and declaratively
capturing the structure of binary data may be a useful step-
ping stone. The metaformats are exemplified by Infra of Hall
et al. [2017] in the case of stored data, and by various notions
of debugging-oriented ‘type’ metadata in the in-memory case.
Unlike its namesake type information in a language runtime,
this kind of information describes not only types’ identi-
ties or definitions, but also their encodings and layouts, i.e.
implementation-level details about in-memory representation
[Free Standards Group 2010; Kell 2015].

Unifying file-based and memory-based metaformats is a
potential technique here. (Indeed, the design of Infra antici-
pates this idea.) Since a client library is necessarily software
which decodes a structured file into more primitive manifest
elements in memory, such debugging-derived meta-level de-
scriptions of its input and output memory buffers may already
represent a job part done. There is then an intriguing possibil-
ity of semi-automated, perhaps trace-guided refactoring-style
tools to infer and extract metaformat-based descriptions from
the pre-existing client libraries that embody these formats
implicitly. The desired curve might be achieved by gradually
morphing such code, likely with human assistance, into a
workable filesystem implementation. Recent work on auto-
mated transplantation [Barr et al. 2015] or older work on less
automated rule-based approaches [Bracciali et al. 2005; Kell
2010; Purtilo and Atlee 1991] may transfer partially to this
task. The decomposition of memory into a hierarchy of allo-
cations, maintained in the liballocs runtime [Kell 2015], and
encompassing both program state and memory-mapped files,
may also provide a useful intermediary for relating in-memory
with on-disk byte patterns.



Critique of ‘Files as Directories’. . . <Programming’18> Companion, April 9–12, 2018, Nice, France

9 CONCLUSIONS
Files as directories is a powerful idea with a long history and
a potentially impactful future. The most significant technical
challenges to realising its goals are not necessarily the most
obvious. In this critique I have drawn attention to some
less obvious concerns: Unix’s latent pluralism, naming as a
computational language, bidirectionality, metasystems, and
economic incentives.

That is not to detract from the considerable merit of the
idea and the importance of follow-up in this direction. The
most significant non-technical challenges are in acceptance of
such a boundary-spanning concept by one or more established
research programmes. It is appropriate that this research is
motivated in the context of interaction, and initially ham-
mered out by argument and criticism (as the present venue
uniquely allows). Despite obviously being a wide-reaching
matter of system design, such issues span beyond what is
typically considered under the present-day research head-
ing of ‘systems’. Similarly, despite also being a matter of
programming, it is liable to be perceived as similarly off-
topic in many venues matching that keyword. Conceptual
exploration, argument and criticism go hand-in-hand with
system-building; I look forward to the future iterations, both
practical and conceptual, that this work might yield.

ACKNOWLEDGMENTS
I am grateful to Raphaël Wimmer, for his thought-provoking
article, and the participants of the Salon des Refusés work-
shop 2018 for the discussions that have further shaped and
refined this critique.

REFERENCES
Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and

Justyna Petke. 2015. Automated Software Transplantation. In
Proceedings of the 2015 International Symposium on Software
Testing and Analysis (ISSTA 2015). ACM, New York, NY, USA,
257–269. https://doi.org/10.1145/2771783.2771796

A Bracciali, A Brogi, and C Canal. 2005. A formal approach to
component adaptation. J. Syst. Softw. 74 (2005), 45–54.

Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. 2008.
Digging for data structures. In In Proceeding of 8th Symposium
on Operating System Design and Implementation (OSDIâĂŹ08.

Roy Thomas Fielding. 2000. Architectural styles and the design of
network-based software architectures. Ph.D. Dissertation. Univer-
sity of California, Irvine. http://portal.acm.org/citation.cfm?id=

932295
Kathleen Fisher, David Walker, Kenny Q. Zhu, and Peter White. 2008.

From dirt to shovels: fully automatic tool generation from ad hoc
data. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL ’08).
ACM, New York, NY, USA, 421–434. https://doi.org/10.1145/
1328438.1328488

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. 2005. Combinators for bi-
directional tree transformations: a linguistic approach to the view
update problem. In POPL ’05: Proceedings of the 32nd ACM
SIGPLAN-SIGACT symposium on principles of programming lan-
guages. ACM, New York, NY, USA, 233–246. https://doi.org/10.
1145/1040305.1040325

Free Standards Group. 2010. DWARF Debugging Information Format
version 4. Free Standards Group.

Antonio L. Furtado and Marco A. Casanova. 1985. Updating Relational
Views. In Query Processing in Database Systems. Springer, 127–
142.

Christopher Hall, Trevor Standley, and Tobias Hollerer. 2017. Infra:
Structure All the Way Down: Structured Data As a Visual Program-
ming Language. In Proceedings of the 2017 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Onward! 2017). ACM, New
York, NY, USA, 180–197. https://doi.org/10.1145/3133850.3133852

Stephen Kell. 2010. Component adaptation and assembly using inter-
face relations. In Proceedings of 25th ACM International Confer-
ence on Systems, Programming Languages, Applications: Software
for Humanity (OOPSLA ’10). ACM.

Stephen Kell. 2013. The Operating System: Should There Be One?. In
Proceedings of the Seventh Workshop on Programming Languages
and Operating Systems (PLOS ’13), Tim Harris and Anil Mad-
havapeddy (Eds.). ACM, New York, NY, USA, Article 8, 7 pages.
https://doi.org/10.1145/2525528.2525534

Stephen Kell. 2015. Towards a Dynamic Object Model Within Unix
Processes. In 2015 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software
(Onward!) (Onward! 2015). ACM, New York, NY, USA, 224–239.
https://doi.org/10.1145/2814228.2814238

Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, Tom Duff,
and Gerard Holzmann. 1991. . Technical Report CSTR 158. Bell
Labs.

JM Purtilo and JM Atlee. 1991. Module Reuse by Interface Adaptation.
Software - Practice and Experience 21 (1991), 539–556.

Dennis M. Ritchie and Ken Thompson. 1974. The UNIX time-sharing
system. Commun. ACM 17 (July 1974), 365–375. Issue 7. https:
//doi.org/10.1145/361011.361061

A. Slowinska, T. Stancescu, and H. Bos. 2010. DDE: dynamic data
structure excavation. In Proceedings of the first ACM Asia-Pacific
workshop on systems. ACM, 13–18.

Raphaël Wimmer. 2018. Files as directories: Some thoughts on ac-
cessing structured data within files. In Companion to the Second
International Conference on the Art, Science and Engineering of
Programming (Programming ’18). ACM, New York, NY, USA.

https://doi.org/10.1145/2771783.2771796
http://portal.acm.org/citation.cfm?id=932295
http://portal.acm.org/citation.cfm?id=932295
https://doi.org/10.1145/1328438.1328488
https://doi.org/10.1145/1328438.1328488
https://doi.org/10.1145/1040305.1040325
https://doi.org/10.1145/1040305.1040325
https://doi.org/10.1145/3133850.3133852
https://doi.org/10.1145/2525528.2525534
https://doi.org/10.1145/2814228.2814238
https://doi.org/10.1145/361011.361061
https://doi.org/10.1145/361011.361061

	Abstract
	1 Introduction
	2 Conceptual strengths
	3 Conceptual weaknesses
	4 Pluralism
	5 Naming languages
	6 Bidirectionality
	7 The inevitability of metasystems
	8 Repurposing existing code
	9 Conclusions
	Acknowledgments
	References

