
Critique of ‘An Anatomy of Interaction:
Co-occurrences and Entanglements’

Tomas Petricek
University of Kent
Canterbury, UK

tomas@tomasp.net

ABSTRACT
The paper by Basman et al. suggests that we think about program-
ming in terms of interaction rather than algorithms. This call needs
to be interpreted in a broad sense – the idea of interaction is not just
another programming abstraction, but different way of structuring
our thinking about programming. This includes thinking about
how users can interact with the software more generally, but also
what are effective metaphorical ways of thinking about software.

In this critique, we review some of the core ideas presented by
Basman et al. We consider what programming substrate might be
used to implement the systems proposed by Basman et al. That is,
systems that blur the boundaries between users and developers. We
also review a number of systems that are technically similar to co-
occurrences and entanglements and we reconsider them through
the perspective of the research paradigm based on interaction.

CCS CONCEPTS
• Software and its engineering→General programming lan-
guages; •Human-centered computing→ Interaction design
theory, concepts and paradigms;

KEYWORDS
Programming paradigms, interaction, end-user programming
ACM Reference Format:
Tomas Petricek. 2018. Critique of ‘AnAnatomy of Interaction: Co-occurrences
and Entanglements’. In Proceedings of 2nd International Conference on the
Art, Science, and Engineering of Programming (Author version <Program-
ming’18> Companion). ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Anatomy of Interaction by Basman, Tchernavskij, Bates and Beaudoin-
Lafon [1] considers programming of computer systems in terms of
interaction. At the technical level, concepts such as events appear in
a number of programming languages and libraries. What makes the
work by Basman et al. interesting is that it is not focused solely on
the technology, but considers interaction as a foundational concept.

In computer science, the idea of an algorihm became the foun-
dation of a dominant research paradigm in 1960s. Ensmenger [6]
argues that this framing of computer science served the community
well within the university, as it provided a academically respectable
mathematical method for talking about computing. It also deter-
mined what problems are studied and what questions can be asked.

Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $0.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The work by Basman et al. can be seen as an attempt to reframe
the foundations of programming research and rebuilding it on the
concept of interaction, rather than on the concept of algorithm.
This has the potential to change the technical aspects of how we
write software, but it also lets us see software from a wider socio-
technological perspective.We can ask not just “how can interactions
be implemented”, but also “who can interact with a system and
how” or “how are interactions conceptualised by the actors”.

This critique revisits some of the ideas mentioned in this paper
and related work through the perspective of this new imagined
research paradigm.

• In Section 2, we consider the aim of enabling active partici-
pation where users can freely modify a system. This requires
providing a simple way of specifying interaction logic. How
might this look and how do we assess simplicity?

• Basman et al. refer to systems that can be modified within
themselves as open systems. In Section 3, we speculate on
fundamental limitations of such systems.

• In Section 4, we review three metaphors for thinking about
interaction proposed by Basman et al. and argue for the
importance of metaphors in programming research.

• Finally, in Section 5, we look at work that proposes concepts
similar to co-ocurrences and entanglements. We look at sys-
tems that are related at the technical level. We consider them
through the perspective of the research paradigm based on
interaction.

2 ENABLING ACTIVE PARTICIPATION
The authors note that there is currently a large gap between users
and creators of software. Even if the software is open-source, mak-
ing even a simple change such as correcting typos is inaccessible to
most users. They argue for an open ecology of function – the system
should enable users to modify and extend it. In this critique, we
consider two aspects of the idea – first, what is the simplicity that
would enable such openness and, second, what are the substrates
through which it can be provided.

2.1 Understanding Simplicity
Much of programming language research aims to make program-
ming simpler, but we do not have a very good understanding what
this means. If we want to make simplicity – which is essential for
the open ecology of function – a legitimate academic topic, we
need to find a way of talking about it. This topic is not discussed
by Basman et al., perhaps because when you see a simple solution,
you know that it is simple! Perhaps, but this is too subjective claim.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France Tomas Petricek

development

development

VBA macros

equations

tables

use
ACCOUNTING SYSTEM

SPREADSHEET/EXCEL

development

use

CO-OCCURRENCES &
ENTANGLEMENTS

Figure 1: An illustration of different substrates for modifying systems. The diagrams show the difficulty of making changes to a
system using different substrates. On the left, we compare typical application (with use and development) with a spreadsheet system that
provides multiple substrates. The dagram on the right shows a worst-case scenario for a co-occurrences & entanglements system. The
diagrams are merely illustrative and the scales are informal. Each substrate has one fixed difficulty and covers a range of changes it supports.

How can we recognise and talk about simplicity? First, it is pos-
sible that simplicity is tacit knowledge, i.e. a kind of knowledge that
is gained through experience and personal involvement with the
subject matter. As described by Polanyi [12], this kind of knowledge
cannot be explicitly written down and analysed. Polanyi gives an
interesting example of the common and statory law systems. Statu-
tory law system is specified as a set of written rules that judges
follow. The common law system provides a set of cases with past
decisions, rather than written rules. The idea is that the rules are
tacit knowledge that cannot be fully written down, but can be un-
derstood through the cases. If we see simplicity in programming
as tacit knowledge, we would still be able to judge it through a set
of cases, or case studies, that demonstrate a number of (more or
less) open systems, describe changes made by their users and judge
their simplicity.

Second, it might be the case that our current research paradigm,
based on mathematical and scientific analysis on programs, does
not equip us with good tools for understanding simplicity, but an
alternative paradigm would. One such paradigm is aluded to in the
original paper – if we analysed programming concepts through the
perspective of cognitive science, we could argue that the simplicity
of a programming model depends on the metaphors it requires.
As such, programming model that can be explained in terms of
cooking is easier to understand than a model based on a machine
that writes symbols on an infinite tape.

2.2 Editing Substrates
The idea of open ecology of function aims to erase the gap between
the developer of a system (who has full control) and the user of the
system (who is limited to operations that the developer imagined).
The gap exists because both personas operate using two different
substrates. Developers interact with the source code of the system
while users interact with the user interface of the system (which
might be graphical or text based).

The division between the user and the developer is common
and clear, but there are systems that provide multiple substrates
that may be accessible to multiple personas. For illustration, see
Figure 1 (left). The diagram compares a typical application (e.g. for
accounting) with a spreadsheet system such as Excel. Spreadsheet
systems provide multiple substrates – user interface for entering
data, language for specifying formulas, scripting language for creat-
ing macros (such as VBA) and the source code of the system itself.
What does a spreadsheet system teach us about providing an open
ecology of function?

• Support for macros and scripting makes the system more
open. We can make larger changes to the system than a
regular application enables.

• Macros are not an end-user programming tool, but require
expert knowledge. (Although research on end-user program-
mingmightmake somemacros accessible to non-programmers.)

• Macros are not easy to share and re-combine. Copying a
specific functionality from one spreadsheet with multiple
macros to another is a difficult programming problem.

• Spreadsheets mix multiple substrates. The difference be-
tween formula, macro and system langauge is perhaps in-
cidental, but there is a notable difference between entering
data and writing code.

A system based on co-occurrences and entanglements faces a
danger of providing the structure of substrates illustrated in Figure 1
(right). The aim of providing substrate that allows large change
during regular usage of the system might make the usage of the
system more difficult. At the same time, if the system is not built
“using itself”, there will still be changes that require modifying its
source code in a traditional way. The lessons for building systems
that provide an open ecology of function are:

• The system should be built using just one substrate that
allows small changes, as well as large changes. We return to
this topic in Section 3.

Critique of ‘An Anatomy of Interaction’
Author version

<Programming’18> Companion, April 9–12, 2018, Nice, France

Figure 2: Structure of substrates that enable open systems. An open system based on a single substrate must make simple changes
easy while still allow large changes. Large changes will never be easy, which is why the area below a diagonal is always blank. The substrate
on the left allows all kinds of changes, but even a simple change may be difficult to do (if the substrate is not used correctly). Can substrate
restrict the complexity of simple changes (on the right) to make those always easy?

• How to make small changes simple remains an open ques-
tion. However, it is important that the single substrate can be
edited inmultiple ways – through a (structured or text-based)
interface that is suitable for more complex changes and
through a (graphical) interface suitable for simple changes.
However, the two interfaces must use the same substrate.

• The architecture needs to make the individual pieces of
functionality easily shareable and re-combinable. Using co-
occurrences and entanglements makes this easier as long
as they can be copied between systems without having to
change the representation of the state of the world.

3 DESIGNING OPEN SYSTEMS
The proposed system should not just enable limited modification
(such as macros in Excel), but it should support the open authorial
principle, i.e. “an expression by one author can have its effect replaced
by another author”. This can only be achieved if the system is
“created within itself” – otherwise, the substrate will always place
constraints that cannot be escaped. If a system provides a macro
mechanism, it is likely impossible to replace the macro mechanism
by writing a new macro.

3.1 Limits of Open System Complexity
A system written in itself is a theoretically appealing idea, but
we hypothesize that it might pose a too strict and unnecessary
requirement. We might prefer a system supporting open ecology
of function that allows authors to replace almost all other effects,
over a system that is too complex. Yet, it is possible to create such
fully open systems. In Smalltalk, the development environment is
fully constructed within itself and it allows authors to replace and
modify all of the existing functionality.

Smalltalk [8], however, is an expert programming environment
that does not make small changes simple to non-developers. This

might be a principal limitation of fully open systems. A system that
can be implemented in itself needs to provide a certain minimal
expressive power, but this, in turn, means that it will have a cer-
tain minimal complexity. (Much like Turing completeness leads to
undecidability in the research paradigm based on algorithms.) We
find understanding such limits of complexity open systems an im-
portant research problem for the proposed programming paradigm
based in co-occurrences and entanglements.

3.2 Making Small Changes Simple
An open system needs to be constructed using a substrate that
allows both large changes (those will inevitably be difficult to make)
and simple changes (these should be simple to make). Figure 2 (left)
shows a diagram (similar to those in Section 2.2) that illustrates the
scope that a substrate of open systems must cover. As discussed
before, to allow simple small changes as well as complex difficult
changes, the user should be able to interact with the substrate in
multiple ways, possibly including a graphical interface and textual
interface.

The diagram on the left also highlights one danger of such
generic substrates. In particular, even a small change can be very
difficult if it is not done in a suitable way. It seems difficult to design
system that allows complexity (to enable large changes) but pre-
vents using the same complex methods when implementing a small
change. Ideally, the substrate diagram would look as in Figure 2
(right), where the substrate is close to the diagonal – simple changes
are easy, large changes are difficult (but possible), but small changes
cannot be done in a complex way.

4 PROGRAMMING AND METAPHORS
The authors suggest that the idea of co-occurrences and entan-
glements has been explained in terms of three metaphors in past
work. The cooking metaphor treats program as a recipe, chemical

Author version
<Programming’18> Companion, April 9–12, 2018, Nice, France Tomas Petricek

search
students = [#student]
total-students = count[given: students]

bind @browser
[#div text: "{{total-students}}

are in the school district"]

Figure 3: Counting studentswith Eve. Eve programs are written
as blocks consisting of search clause and bind clauses. Search speci-
fies requirements for triggering the pattern (akin to co-occurrence)
and bind specifies actions that are produced (akin to entanglement).
In this example, search collects all students and counts their total
number while bind updates information on a web page.

metaphor treats interaction as a chemical reaction and quantum
metaphor explains how objects remain interlinked as a result of
entanglement.

We find the discussion about metaphors noteworthy. Lakoff
and Núñez [9] convincingly argue that metaphors are the key for
construction of (even abstract) mathematical thought and we simi-
larly find metaphors important for thinking about programming.
Petricek [10] argues that each programming concept should be un-
derstood at three levels – formal used for reasoning, implementation
representing source code and metaphorical providing the intuitive
understanding. In this light, discussion about metaphors should be
an inherent part of any programming paper.

4.1 Metaphors for Interaction
The idea of interaction is more directly rooted in everyday experi-
ence than the idea of algorithm, which might make it more suitable
for metaphoric thinking.

The use of multiple metaphors for describing the one family of
systems is akin to some of the metaphors used to construct mathe-
matics in the work of Lakoff and Núñez. For example, numbers and
arithmetic can be seen both as an object collection and as movement
along a path. Using multiple metaphors makes it possible to under-
stand cases where one metaphor does not work well. For example,
if we interpret numbers as collections of given sizes, it is difficult to
interpret what zero means (there is no empty collection in the real
world), but if we see numbers as movement, then zero corresponds
to staying in the inital place.

In the same way, multiple metaphors for co-occurrence and
entanglement might provide complementary ways of looking at the
system. Perhaps most importantly, they might give us a more “user”
and a more “expert” perspectives on the same substrate. We suggest
that a hypothetical system might use a simple metaphor such as
cooking to allow users to make simple changes and a more complex
metaphor such as quantum physics to allow experts reshape the
system more significantly. Such combination might allow us to
design a system that is close to the one imagined in Figure 2 (right).

4.2 Methodological Questions
The study of metaphors in programming is relatively new andmuch
remains to be done. Metaphors are often used when explaining
abstract programming concepts. Some argue that this is a mere

def get(c) & putInt(n) =
c(sprintf "Number: %d" n)

def get(c) & putString(s) =
c(sprintf "String: %s" s)

Figure 4: One-place buffer in JoCaml. In JoCaml, programs are
specified as joins between one or more channels. A pattern is trig-
gered once calls to all joined channels are made (thus a join pattern
is akin to co-occurrence). Here, the putInt and putString chan-
nels provide two ways of putting values into a buffer and get takes
a continuation that will be triggered with a composed message
once a string or an integer is put into one of the two put channels
(adapted from [11]).

kludge, while some see such metaphors as fundamental for our
understanding. This question is likely a “wicked problem” [13] that
cannot be easily empirically tested. One aspect of metaphors that
has been empirically tested is whether they help understanding in
certain narrow contexts such as visual programming [3] or the use
of diagrams [2].

The paradigm envisioned by Basman et al. has the potential to
make metaphors an important programming design tool, but it also
shows we need better theoretical tools for analysing metaphors in
the context of programming:

• First, we need to study howmetaphors relate programs to the
real world experience. Lakoff andNúñez talk about grounding
metaphors that link physical experiencewith basicmathemat-
ical concept (sets are like physical containers) and linking
metaphors that relate multiple mathematical entities. Are
those concepts applicable to programming, or do we use
different kinds of metaphors?

• Just like arithmetics as object collection does not naturally
explain zero, the three metaphors mentioned by Basman et
al. each have some limitation in how well they explain co-
occurrence and entanglement systems. What is a metaphor
that explains the system the best? And should we compare
metaphors in this way?

5 RELATEDWORK
The Anatomy of Interaction can be seen from multiple perspectives.
In Section 2 and Section 3, we discussed the human centric per-
spective and the aim to enable wider participation. In Section 4, we
focused on cognitive aspects of the technology of co-occurrences
and entanglements. In this section, we wrap-up by considering the
technical perspective.

The idea of a co-occurrence is similar to programming abstrac-
tions from a number of reactive and concurrent programming sys-
tems. Although those are mostly aimed at expert developers, it is
worth pointing out the technical similarities.

5.1 Joins and Pattern Matching
To quote the authors, “co-occurrence determines what elements of
the design are in a configuration in which an interaction that involves

Critique of ‘An Anatomy of Interaction’
Author version

<Programming’18> Companion, April 9–12, 2018, Nice, France

themmay potentially be initiated”. Aa number of past systems imple-
ment a limited form of co-occurrence detection. Pattern matching
in functional programming also checks for a specific configuration,
but considers only a shape of given input data structures.
Join calculus. Functional patterns have been generalised to join
patterns [4] in programming languages based on the join calculus
such asCω or JoCaml [5]. Join patterns are closer to co-occurrences
because they also include temporal aspect – a join pattern is de-
tected each time a specific configuration of values in channels is
available. For example, see Figure 4, which shows a one-place buffer
implemented in JoCaml. Patterns such as get(c) & putInt(n)
can be seen as co-occurrences, with c and n being variables that
can be used to construct an entanglement.

Although join calculus appeared as a theoretical abstract ma-
chine, it is worth noting that it shares the chemical metaphor [7]
suggested by Basman et al. Therefore, join calculus is related work
both at the implementation and at the metaphorical level.
Logic programming with Eve. Eve [14] is a system shares the aim of
allowing more people to program, although it does not necessarily
share the aim of making all systems open to modification by users.
Technically, it is based on logic programming. Its core is similar to
pattern matching – a code block can specify search clause which
declaratively specifies a required configuration. The bind block
then specifies what to do in response. An example is shown in
Figure 3. Interestingly, Eve documentation does not describe the
architecture in terms of metaphors, but it largely matches the ar-
chitecture of co-occurrence and entanglement systems and might
provide another fruitful example.

5.2 Opening Closed Systems
All of the aforementioned programming concepts were introduced
as programming languages or language features for software devel-
opers. They were not intended as the foundation of a system that
provides an open ecology of function. However, is it possible to take
such closed system and make evolve it into an open one?

At the technical level, the system needs to allow modification of
the source code by the user (during execution). This seems feasible
for systems such as JoCaml or Eve. The architecture of pattern
matching (or co-occurrences) that operate on some global state
make such dynamic code update easier as we do not need to inter-
rupt executing program.

We still need to make editing of code easier in order to make
the system fully open to user modification. As discussed before,
this might require us to provide multiple ways of editing the same
substrate – and both join patterns and logic programming as in Eve
might provide a suitable substrate (expressive enough to satisfy the
expressive limit described in Section 3.1).

Taking an existing system and making it open might also provide
a way to bootstrap a community around an open system. Rather
than building the whole system and community around it from
scratch, we might prefer to build on existing tools and community
interest to turn a closed system into an open one.

6 CONCLUSIONS
In our view, the most important contribution of Anatomy of Inter-
action is the aim to rethink programming and focus on interaction
rather than algorithms. This allows us to see programming from
a more human-centric perspective and think about how humans
interact with computers and what metaphors allow them to do so.

At the technical level, the paper imagines an open ecology of func-
tion where systems can be modified by users, components shared
and recombined. This poses important technological challenges.
In this critique, we focused on the idea of substrate that is used to
construct such systems. The idea of a substrate lets us visualize the
difference between ordinary applications, spreadsheet systems and
the system imagined by the authors. In order to build a fully open
system, the substrate needs to cover a full range of easy-to-make
small changes and difficult-to-make complex modifications. This
could be achieved by providing multiple ways of working with the
substrate – possibly using multiple metaphors such as quantum
physics at the low level and cooking at the high level.

REFERENCES
[1] Antranig Basman, Philip Tchernavskij, Simon Bates, and Michel Beaudouin-

Lafon. 2018. An Anatomy of Interaction: Co-occurrences and Entanglements. In
oceedings of 2nd International Conference on the Art, Science, and Engineering of
Programming (<Programming’18> Companion). ACM.

[2] Alan Frank Blackwell. 1998. Metaphor in diagrams. Ph.D. Dissertation. University
of Cambridge.

[3] Alan F Blackwell and Thomas RG Green. 1999. Does metaphor increase visual
language usability?. In Visual Languages, 1999. Proceedings. 1999 IEEE Symposium
on. IEEE, 246–253.

[4] Georgio Chrysanthakopoulos and Satnam Singh. 2005. An asynchronous mes-
saging library for C#. In Proceedings of the Workshop on Synchronization and
Concurrency in Object-Oriented Languages. OOPSLA San Diego, 89–97.

[5] Sylvain Conchon and Fabrice Le Fessant. 1999. Jocaml: Mobile agents for
objective-caml. In Agent systems and applications, 1999 and third international
symposium on mobile agents. Proceedings. First international symposium on. IEEE,
22–29.

[6] Nathan L Ensmenger. 2012. The computer boys take over: Computers, programmers,
and the politics of technical expertise. Mit Press.

[7] Cédric Fournet and Georges Gonthier. 1996. The Reflexive CHAM and the Join-
calculus. In Proceedings of the Symposium on Principles of Programming Languages
(POPL ’96). ACM, 372–385.

[8] Adele Goldberg and David Robson. 1983. Smalltalk-80: the language and its
implementation. Addison-Wesley Longman Publishing Co., Inc.

[9] George Lakoff and Rafael E Núñez. 2000. Where mathematics comes from: How
the embodied mind brings mathematics into being. AMC 10 (2000), 12.

[10] Tomas Petricek. 2018. What we talk about when we talk about monads. The Art,
Science, and Engineering of Programming 2, 12 (2018).

[11] Tomas Petricek and Don Syme. 2011. Joinads: a retargetable control-flow con-
struct for reactive, parallel and concurrent programming. In International Sym-
posium on Practical Aspects of Declarative Languages. Springer, 205–219.

[12] Michael Polanyi. 2015. Personal knowledge: Towards a post-critical philosophy.
University of Chicago Press.

[13] Horst WJ Rittel and Melvin M Webber. 1973. Dilemmas in a general theory of
planning. Policy sciences 4, 2 (1973), 155–169.

[14] The Eve team. 2018. Eve: Quickstart. Online at http://docs.witheve.com/v0.3/
tutorials/quickstart (2018).

http://docs.witheve.com/v0.3/tutorials/quickstart
http://docs.witheve.com/v0.3/tutorials/quickstart

	Abstract
	1 Introduction
	2 Enabling Active Participation
	2.1 Understanding Simplicity
	2.2 Editing Substrates

	3 Designing Open Systems
	3.1 Limits of Open System Complexity
	3.2 Making Small Changes Simple

	4 Programming and Metaphors
	4.1 Metaphors for Interaction
	4.2 Methodological Questions

	5 Related Work
	5.1 Joins and Pattern Matching
	5.2 Opening Closed Systems

	6 Conclusions
	References

