
Tracing a Paradigm for Externalization: Avatars and the GPII Nexus

COLIN CLARK, OCAD University
ANTRANIG BASMAN, Raising the Floor
We will situate the concept of an avatar (a working simulacrum of part of a
system separated from it in space or time) with respect to traditional concepts of
programming language and systems design. Whilst much theory and practice
argues in favour of insulation (the creation of architectural boundaries pro-
hibiting the leakage of information) we will �nd that many successful systems
take a diametrically opposed approach. We name this family of systems as
those based on externalised state transfer. Rather than hiding implemen-
tation details behind APIs, object interfaces or similar, these systems actively
advertise their internal structure and its coordinates via data and metadata.
Examples of these systems include RESTful web applications, MIDI devices, and
the DWARF debugging �le format. We discuss such systems and how we can
purposefully design new systems embodying such virtues in a more distilled
form.

1 AVATARS
An avatar is a part of a system of which a working simulacrum
can be naturally embodied elsewhere. �e simulacrum is a func-
tioning replica of the remote system, which can stand in for it to
some level of faithfulness without having to ask questions of it at
each interaction. �e notion of “naturalness” we hope to establish,
however, cannot be determined by examining properties of a single
group of interacting systems. Instead, we will need to consider
ecologies of such related systems, their users, and networks of other
authors who work with them. By exhibiting di�erent kinds of sys-
tems which we consider meet and do not meet our de�nition, we
hope to sharpen understanding of the distinction we are interested
in, as well as promote new development techniques that make the
implementation of avatars natural and idiomatic.

We have borrowed and extended the term “avatar” from its tradi-
tional use describing a visual or schematised representation of a user
of a system. In our usage, an avatar is a more or less symmetrical
concept: two systems may be avatars of one another if they meet
the criterion of faithfulness or representation without one of them
being necessarily designated as “primary” or “real”.

�e most common appearance of the avatar pa�ern is in support-
ing a remote user interface, whereby a single system exposes the
potential for control to di�erent locations, separated by a network of
some kind. To the extent that the remote system might be agnostic
as to whether the controlled system is local or remote, it could be
said to be working with an avatar, or functioning local replica of the
controlled system. However, whilst it is one of the most convenient,
the avatar pa�ern is an uncommon choice for implementing such a
remote UI. A more common pa�ern has the remote UI bound to the
controlled system by a message bus along which passes essentially
arbitrary messages — that is, messages with individual schemas
whose content do not correspond to an integrated view of the sys-
tem state. We could describe this pa�ern as a remote procedure
call (RPC) or API idiom where the message bus simply stands in for
whatever function calls the two parts of the architecture found it
necessary to make to each other from time to time. Examples of
this remoting pa�ern are the X Windows protocol, the Microso�

Windows Remote Desktop protocol, Virtual Network Computing,
etc.

1.1 Avatars for the future
�ere are numerous other productive uses of the avatar model,
which need not be limited to scenarios where the separation is in
space. �e avatar model could be used to support advanced live
programming scenarios [3], where a system that is being authored
can be asked, explicitly or implicitly, to speculate about states it
might reach in the future as a result of di�erent authorial gestures.
�is supports the highest level of liveness (L6) in Church et al. [4]’s
classi�cation of live programming paradigms. In this case, part of
the current system becomes an avatar for part of its state in the
future — it is a working simulacrum allowing the user to see some
or all of its behaviour, but which is integral in itself and may be
immediately discarded without any side e�ects on the behaviour of
the current system.

1.2 Avatars from REST
However, it’s not accidental that by far the most proli�c technology
for supporting remote user interfaces, the web, is also the birth-
place of a so�ware idiom, REST [6], which is a foundational part
of the avatar model. In REST, “representations of state are trans-
ferred” — that is, the remote system does not simply answer arbitrary
messages, but instead guarantees to transfer complete (exhaustive)
representations of part of its application state to the UI client. �e
expectation is that the client then operates on this state in the form
of a local avatar of some greater or lesser degree of faithfulness,
as a functioning replica of some aspect of the remote system. �e
extension that the avatar model represents with respect to REST is
that we provide for transfer of representations capable of dynamic
evolution of behaviour. �is distinction is elaborated in Basman
et al. [3] where we describe the extension that a potentia represents
with respect to a system, like the web, with the document object
model (DOM) for its pages transmi�ed over HTTP as HTML, which
only provides for representing an extensa.

1.3 Avatars not from objects
�ere are descriptions of systems which appear to conform to our
description of an avatar, but which we recognise as part of a distinct
conception. Bank [2] contains a now legendary interview by Wired
Magazine with James Gosling, in which he describes an experience
listening to a concert, watching “semirobotic lights which seemed to
dance to the music” and being inspired by them to think di�erently
about “making behaviour �ow through networks”. �e resulting
language that he designed, Java, is a paradigm member of what
we named the API idiom for distributed behaviour. But there is
a subtlety to be worked out here — since Java, Smalltalk et al do
indeed allow behaviour to be shipped wholesale around the network
and reconstituted at a remote site for further execution. Why do



1:2 • Colin Clark and Antranig Basman

we not admit such a system as constituting a usage of the avatar
pa�ern we are describing?

It is because the shipped representation is necessarily opaque to
any consumers except for the runtime of the remote system, and
that (and hence) the representation itself supplies no assistance as
to how to establish conformance in representational state between
the systems it is shipped between. A Java applet rendering a user
interface served from a Java server can derive very li�le assistance
from the conformance in languages and virtual machines, even if
it makes use of Java’s serialisation facilities in shipping complete
objects (that is, combined state and behaviour) around the network.
In practice, real-world Java applications communicate at runtime
via standard, arbitrary APIs. �is is because they are expressed
in terms of “objects”, language and runtime artefacts expressed in
a paradigm where information hiding and insulation are seen as
virtues. In the paradigm we are proposing, they are the reverse — a
reversal we’ll examine in the next section.

1.4 Avatars against information hiding
Almost all current programming languages, their philosophies (whether
procedural, functional, or object-oriented), toolchains and imple-
mentation technologies (compilers, virtual machines) work to ob-
struct the e�cient creation of avatars. We assert that the typical
tendency of thought by so�ware engineers and computer scientists
is to only cater for cases where a system is operated on from inside
itself, neglecting its participation in wider authorial networks where
it is embedded in wider contexts of use, by clients separated in space
and time, using di�erent languages, idioms and technologies.

Sometimes the neglect of these wider contexts of use is active and
intentional. A signi�cant lineage in favour of information hiding
can be traced back to Parnas [8]. Here, Parnas’ primary motivation
for information hiding was to establish more e�cient, centralized
management processes that would help scale so�ware development
practises for increasingly large, disconnected teams of program-
mers of varying skill levels. Unfortunately, as is o�en the case with
foundational developments in a nascent �eld, the advice is taken
on board, and the historical and social context in which it arose is
forgo�en. Parnas’ social structure for so�ware development teams
became, over time, sedimented into the technical infrastructure of
programming languages and design philosophies. Yet today’s devel-
opment is equally as likely to occur on an individual or local scale as
against a corporate backdrop, and fundamentally di�erent consider-
ations than those which originally embedded information hiding as
a core virtue underlying programming language development may
well be appropriate.

In practice, whenever artefacts are embedded in a particular con-
text of use where avatar-style working is strongly required, certain
technological pa�erns have emerged, o�en informally, which sup-
port this style of working. �ese pa�erns, involving the use of
externalised state as we discussed in the previous two sections, are
either overlooked or if they are observed, are usually decried by tra-
ditional so�ware technologists as being antithetical to their values
(“�e web is broken!”, as seen in Tiselice [12] and others). �ese
pa�erns support the avatar model by purposing the messages which
are transported between systems as “state transfer” in the REST
sense. �e fact that these messages are supported have implications

for how the remote architecture is seen by others, and usually also
on how it sees itself — rather than lying in opaque “black boxes”
beloved of the proponents of information hiding, object orientation,
or the API model, the architecture is instead coordinatised [3], with
its elements laid out in a spatial grid or tree, each element of which
has well-known coordinates and whose state is in theory available
for inspection and modi�cation at any time.

2 MIDI DEVICES
An early, partial example of externalized state transfer is MIDI (Mu-
sical Instrument Digital Interface). Instruments and controllers
equipped with MIDI, such as synthesizers, drum machines, se-
quencers, and patch editors, have proliferated over the last 35 years.
Indeed, MIDI has had an unusual longevity: despite appearing an-
tiquated by today’s standards, it remains one of the most widely-
supported interoperability technologies available, and most new
musical devices today still come equipped with it. For example,
the Yamaha DX7, one of the �rst MIDI synthesizers available, was
released in 1983; Patch Base, an iOS patch editor used to “program”
the DX7, was updated by its developer only days ago. Musicians still
regularly employ original, decades-old MIDI hardware, and can inte-
grate it with new so�ware and platforms. What gives MIDI devices
this longevity, which seems so unlike today’s rapidly-obsolescing
general-purpose so�ware products?

2.1 System Exclusive Messages in MIDI
One of the reasons why many old MIDI instruments continue to
be musically viable is due, perhaps counterintuitively, to its least
“designed” aspect: system exclusive (SysEx) messages. �e content
of SysEx messages was never standardized by the Music Manu-
facturer’s Association (MMA); system exclusive messages are free,
vendor-speci�c messages that can, in theory, convey any kind of
information to or from a MIDI device. However, in practice, MIDI
SysEx messages were immediately used in a semi-conventionalized
way as a means for externalizing the complete state of a musical
device – all its patches, voice parameters, and se�ings. �is was un-
doubtedly motivated by the storage constraints of the era; in Smith
and Wood [10], MIDI’s designers only anticipate SysEx’s use as a
means for loading and saving patches to and from external storage.
In practice, however, this comprehensive externalization enabled an
unexpected ecosystem of third-party, so�ware-based patch editors
and alternative control hardware to emerge. Most MIDI manufactur-
ers provide a comprehensive (if not standardized) means for remote
applications and devices to query and modify all aspects of the
device’s state, both in whole (an entire map of patches) or in part
(a single parameter value for one voice). As a result, completely
novel user interfaces have been designed to make programming
the complex, single-line menu interfaces of old synthesizers sub-
stantially easier. Similarly, patch “morphers” and randomizers have
been developed to algorithmically assist composers in generating
novel sounds on these devices. It is this ecosystem of unanticipated
remote programmability that has extended the value of old MIDI
devices well beyond their designer’s expectations, allowing them to
adapt to today’s increased computing power, greater user interface
sophistication, and the rise of mobile devices.



Tracing a Paradigm for Externalization: Avatars and the GPII Nexus • 1:3

2.2 Avatars for the physical
A patch editor’s user interface can be seen as an avatar for the an-
cient synthesizer, controlling it over a stream of MIDI messages
whose format has not changed over this timespan. Accidental
though it was, MIDI devices have a key quality that is divergent
from most modern so�ware architectures: they provide a fully ex-
ternalized view of the entire device’s state, and this state can be
operated on, in whole or in part, externally.
MIDI’s view of state is, by today’s standard, unquestionably

anachronistic and far too low-level, yet nonetheless o�ers a view
into a “characteristic of the machine”. �e SysEx protocol allows for
the exchange of essentially arbitrary streams of bytes, and o�ers
the barest formality for framing these byte streams and identifying
their sources. One might expect this lack of constraint to result
in arbitrary, RPC-like idioms for message encoding and interpreta-
tion. Instead, the dominant idiom for these messages is to simply
transfer certain sections of the device’s memory to and from the
host. Contrary to the proponents of reuse who promote insulation
and information hiding as the primary routes to this goal, devices
based on this idiom have proved the most durable and reusable in
historical practice.

2.3 Falling away from the avatar pa�ern
Along the way, however, it seems that this architectural bene�t
is increasingly lost to developers. For example, iOS is becoming
increasingly popular as a platform to both develop new musical
instruments as well as to emulate older hardware devices. Yet few,
if any, iOS synthesizers provide any means for externalizing their
state, via SysEx or otherwise. �e only way to edit patches or
customize their state is via their graphical user interface. Even ap-
plications such as the Roland Sound Canvas app, which claims to
“emulate perfectly” its popular hardware namesake from the 1990s,
speci�cally omits the SysEx implementation of the original Roland
GS speci�cation. �is prevents it from being in any way exter-
nally edited, customized programmatically, or used via an di�erent,
context-appropriate UI. Here, in the realm of sophisticated and pol-
ished user interfaces, there is no longer a means to alternatively
control, present, or con�gure the virtual device. �e designer’s plan
is absolute.

2.4 MIDI’s false future: OSC
Newer protocols such as Open Sound Control (OSC), which some
have suggested could eventually replace MIDI, address some of
the anachronistic qualities of MIDI (such as its 7-bit value reso-
lution), but do li�le to promote the more sophisticated forms of
externalization that we outlined in the previous section. In partic-
ular, OSC lacks any way to express state within the coordinatized
hierarchy of a ”document” that formats such as JSON provide. As
such, OSC actually makes it signi�cantly more di�cult to transfer
full, faithful avatars of a system’s state while retaining addressabil-
ity; state typically needs to be transferred one property at a time.
In practice, nearly all remote interfaces implemented using OSC
tend towards the RPC-like idiom, providing only a way to remotely

invoke functions. �is makes it di�cult to support the serendip-
itious or unanticipated use of a system without the consent and
intervention of its designers.

3 UNIX PROCESS METADATA
Kell [7] observes that, through the practical necessity of supporting
the crucial authorial activity of debugging, UNIX processes have de
facto been supplied with su�cient metadata to support substantial
introspection into their allocation pa�erns, which can be recovered
from the DWARF metadata accompanying object code and other
sources. �is is in contrast to the typical computer science design
recommendations of providing services to support such faculties
of re�ection. �e traditional VM approach to re�ection has “the
re�ecting client consume the services of an in-VM re�ection API
and/or debug server”. [7] notes that such an approach would be
substantially limited in function (not supporting the post-mortem
case of debugging against a “dead” core dump) and portability (not
supporting the use of one vendor’s debugger to debug code from
another’s compiler). By casting its task in terms of externalising
access to the state of the system, by mapping its addresses in terms
of metadata, the process model promotes the capability of parts of
the system to act as avatars for others, even to the extent of bridging
the divide between the living and the dead (being able to treat
in-memory, running processes on common terms to core dumps in
�les). Similarly to the ability of state transfer-based MIDI devices to
enjoy huge longevity and portability, Kell [7] notes that for a system
cast in terms of an API, “it becomes hard to implement re�ection
features not anticipated in the design of the re�ection API or debug
server command language. By contrast, metadata is open-ended
and naturally decoupling”.

4 THE NEXUS
�e GPII Nexus [5] is a concrete implementation of the values and
idioms of the avatar model. It provides a means for connecting
together so�ware components that may have been implemented
using di�erent programming languages, toolkits, and frameworks,
which may be running on di�erent devices or processes. �e Nexus
is being developed as part of the Prosperity4All Project [9], a Eu-
ropean Commission-funded project that aims to reduce the cost
and complexity of building assistive technologies and adaptive user
interfaces.

4.1 Current Nexus Architecture and Integrations
�e Nexus is currently implemented as a JavaScript application
wri�en in Node.js, which exports a fully addressed tree of imple-
mentation cells, each named a component, over widely supported
public web protocols such as HTTP and WebSockets, with payloads
encoded as JSON [1]. �e underlying substrate for the Nexus is an
in-memory tree of components managed by the Infusion framework
[11] where the exported JSON payloads correspond to Infusion’s
declarative dialect for encoding application function.

Clients of the Nexus can be easily implemented in any language
or platform, including within web browsers, low-powered devices,
and mobile or desktop platforms. So far, we have developed clients
in both Java and JavaScript using Web Sockets, and have deployed
Nexus clients on embedded platforms including the Raspberry Pi



1:4 • Colin Clark and Antranig Basman

HTTP PUT /defaults/examples.minimalGrade {gradeNames: "fluid.component"}
HTTP POST /components/minimalInstance {type: "examples.minimalGrade"}
HTTP DELETE /components/minimalInstance

Listing 1. Some simple Nexus directives encoded over the HTTP protocol

and C.H.I.P. board computers. Notably, we have recently used the
Nexus to develop a new distributedmusical instrument that provides
custom user interfaces that help to engage a diversity of users in
performing music. We have designed Nexus-connected UIs that pro-
vide di�erent ways to collectively improvise music using alternative
keyboards, note grids, mobile accelerometers, and head-trackers.
�e goal of this project is enable non-musicians and people with
disabilities to participate fully in the creative process.

4.2 Examples of the Nexus API
When addressing a particular component in the tree, a segment of
the Nexus API corresponds to the well-known “CRUD over REST”
protocol whereby resources are managed by HTTP verbs at a partic-
ular URL. Examples of some very simple Nexus directives are shown
in Listing 1, where we register a new grade (potentia I element),
create a component of that grade at the root of the component tree
(using a potentia II directive) and then destroy the component.

However, when taken as a whole, the Nexus API supports the
transmission of wholesale avatars. �erying the contents of a par-
ticular section of the Nexus’ component tree over HTTP allows it to
be completely replicated at another site, together with any dynamic
behaviour.

4.3 Encoding dynamic behaviour
�e dynamic behaviour of a Nexus (Infusion) application includes
the capacity of the system to create or destroy further components,
�e distinction between systems which close over this capacity
and those which do not is an important one, analogous to our
subsumption of REST in section 1.2. �e web technologies which we
describe as the inspiration and foundation for Infusion are missing
this capability, since they can only close over the DOM, which at
any time simply expresses the capabilities of a static document. In
the terminology of Basman et al. [3], the DOM simply constitutes an
extensa whereas a fully capable dynamic system must also encode
state corresponding to two kinds of potentia. If, for example, clicking
on a bu�on causes a new application region to be created, this
capability must necessarily be encoded outside the DOM — since if
it was encoded within the DOM, this leads to the absurd result that
every possible application condition is encoded somewhere within
a gigantic, extensive DOM — this absurdity is closely related to the
ancient fallacy of preformationism [13] in which the reproduction
of organisms was believed to be enabled by every possible recursive
descendent of an organism being enclosed within it in miniature
form.
Encoding the two kinds of potentia — potentia I, loosely analo-

gous to types or classes in traditional languages, and potentia II, the
aligned registry of user expressions, which has no equivalent in tra-
ditional languages — has been one of the principal tasks of Infusion
development over the last few years. Interested readers can consult

Basman et al. [3] and the Infusion framework documentation and
related JIRA tickets for details.

4.4 Requirement for transactional updates
A crucial element of any successful avatar system is transaction
demarcation. It must be possible for a sequence of related Nexus
creation or destruction messages (in the terminology of Basman
et al. [3], such messages are potentia II elements) to be grouped as
part of a transactional unit which must be honoured completely
or not at all, in order to ensure that the system is le� in a state
meaningful to users. �is capability is implicit in our de�nition of
an avatar system: since these are separated in space or time from
one another, the �delity with which one may stand in for another
must be resolved with respect to some kind of minimum granular
unit.
It is an important goal of the Nexus to formalise such demar-

cation models as well as providing infrastructure for supporting
reference implementations. Transactions are even more essential
within avatar systems than they are in traditional database applica-
tions storing “dead data” over CRUD - since the moment an avatar is
transferred, its state may immediately start to evolve. It’s essential
that there can be a model of atomicity for these updates so that
partially transferred avatars do not begin to corrupt their state. �is
atomicity is also crucial to support “avatars over time,” which we
sketched in section 1. If we begin to speculatively execute some
possible future con�guration of the system, it is essential that it can
be completely backed out without e�ect if it is not desired in the
present.

To support this, the Nexus will support a model inspired by cur-
rent generations of distributed version management tools such as
Git, which assign globally stable hashes to the con�guration of parts
of its tree, to which the tree could always be restored assuming that
the storage backing the hash has not been discarded. Every client
communication is enlisted in such transactions, in which they are
operating on an avatar that is isolated from those visible by other
clients, until they explicitly commit their transaction. At this point,
the updates to the avatar will be resolved. If they cause an error
either with respect to the internal avatar contents, or with respect to
the rest of the tree, the entire transaction will be backed out and the
communication ended without any externally visible side-e�ects.
�is process allows safe experimentation with arbitrarily complex
updates to application state, many of which could be speculatively
executed against local or remote avatars, supporting the use cases
of L6 programming in the sense of Church et al. [4]. �e choice of
where to execute the update can be driven by the economics of the
situation — the relative compute power of the client and its peer,
network costs, latency requirements — rather than being a choice
forced by the so�ware architecture as is almost always currently
the case.

5 CONCLUSION
We’ve described the conception of the avatar and shown its rela-
tionship to the externalised state transfer idiom, which is one that
arises naturally in communities which need to produce artefacts
that are shared as part of an open ecology of function. �e goal of
the externalised state transfer idiom is to encourage and facilitate



Tracing a Paradigm for Externalization: Avatars and the GPII Nexus • 1:5

the implementation of avatars, resulting in harmonious, democratic
and open experiences of authorship by integrated communities,
rather than proceeding in a hierarchy of command from a technical
elite. �e pleasant results of this idiom include live programming
systems able to assist the user to speculate about the future e�ects
of current authorial decisions, systems which expose a rich variety
of interaction idioms and technologies suited to a diverse commu-
nity of authors and users, and systems which enjoy huge longevity
and support through ditching reliance on bri�le idioms based on
contracts, function calls, and encapsulation boundaries.

6 ACKNOWLEDGEMENTS
�e authors would like to thank Simon Bates, the lead developer
of the Nexus, for his contributions to this paper and to the Nexus
as a whole. �is research, part of the Prosperity4All Project, was
funded by the European Union’s Seventh Framework Programme
(FP7/2007-2013) grant agreement no. 610510.

REFERENCES
[1] Antranig Basman and Simon Bates and Colin Clark. 2016. Nexus API. (2016).

h�ps://wiki.gpii.net/w/Nexus API
[2] David Bank. 1995. �e Java Saga. (1995). h�ps://www.wired.com/1995/12/

java-saga/
[3] A. Basman, L. Church, C. Klokmose, and C. Clark. 2016. So�ware and How it

Lives On - Embedding Live Programs in the World Around �em. In Proceedings
of the Psychology of Programming Interest Group.

[4] L. Church, E. Söderberg, G. Bracha, and S. Tanimoto. 2016. Liveness becomes
Entelechy - a scheme for L6. In�e Second International Conference on Live Coding.

[5] Colin Clark and Antranig Basman and Simon Bates. 2016. �e GPII Nexus. (2016).
h�ps://wiki.gpii.net/w/�e Nexus

[6] Roy T. Fielding and Richard N. Taylor. 2000. Principled Design of the Modern
Web Architecture. In Proceedings of the 22nd International Conference on So�ware
Engineering (ICSE ’00). ACM, New York, NY, USA, 407–416.

[7] S. Kell. 2015. Towards a Dynamic Object Model within UNIX Processes. In
Proceedings of the 2015 OOPSLA Companion (Onward). 224–239.

[8] D.L. Parnas. 1971. Information Distribution Aspects of Design Methodology.
Methods 4, 5 (1971), 6–7.

[9] Ma�hias Peissner, Gregg C. Vanderheiden, Ju�a Treviranus, and Gianna Tsakou.
2014. Prosperity4All–Se�ing the Stage for a Paradigm Shi� in eInclusion. In Inter-
national Conference on Universal Access in Human-Computer Interaction. Springer,
443–452.

[10] Dave Smith and Chet Wood. 1981. �e USI, or Universal Synthesizer Interface. In
Audio Engineering Society Convention 70. h�p://www.aes.org/e-lib/browse.cfm?
elib=11909

[11] Fluid Team. 2017. Fluid Infusion Documentation. (2017). h�p://docs.�uidproject.
org/infusion/development/

[12] Dragos Tiselice. 2015. Web sucks and here’s how we can make it awesome. (2015).
h�ps://www.presslabs.com/blog/web-sucks-how-to-make-it-awesome/

[13] Wikipedia. 2017. Preformationism. (2017). h�ps://en.wikipedia.org/wiki/
Preformationism

https://wiki.gpii.net/w/Nexus_API
https://www.wired.com/1995/12/java-saga/
https://www.wired.com/1995/12/java-saga/
https://wiki.gpii.net/w/The_Nexus
http://www.aes.org/e-lib/browse.cfm?elib=11909
http://www.aes.org/e-lib/browse.cfm?elib=11909
http://docs.fluidproject.org/infusion/development/
http://docs.fluidproject.org/infusion/development/
https://www.presslabs.com/blog/web-sucks-how-to-make-it-awesome/
https://en.wikipedia.org/wiki/Preformationism
https://en.wikipedia.org/wiki/Preformationism

	Abstract
	1 Avatars
	1.1 Avatars for the future
	1.2 Avatars from REST
	1.3 Avatars not from objects
	1.4 Avatars against information hiding

	2 MIDI Devices
	2.1 System Exclusive Messages in MIDI
	2.2 Avatars for the physical
	2.3 Falling away from the avatar pattern
	2.4 MIDI's false future: OSC

	3 UNIX Process Metadata
	4 The Nexus
	4.1 Current Nexus Architecture and Integrations
	4.2 Examples of the Nexus API
	4.3 Encoding dynamic behaviour
	4.4 Requirement for transactional updates

	5 Conclusion
	6 Acknowledgements
	References

