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Abstract
Classically, computers have been used as knowledge discovery tools

insofar as the result of executing a program provides useful insight.

For instance, the solution of a differential equation may help us

understand the natural world, the value of a parameter of a statisti-

cal model may help us understand the probabilistic structure of a

domain, the variable assignment maximising an objective function

may help to further business goals. A secondary class of knowledge
discovery stems from the act of using a programming language. By

modeling a domain computationally, the developer can discover

new and interesting properties of that domain, and better convey

those insights to others. The purpose of this work is twofold: First,

we want to show that programming languages can help their users

achieve knowledge discovery moments and, secondly, that this prop-
erty is the least exploited feature of programming languages in the

general science community. We want to outline a research program

with the objective of making scientific programming more efficient

in its ultimate goal of knowledge discovery.
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“[. . . ] for Vannevar Bush and for many others, ana-

log machines had a wonderfully evocative quality.

They didn’t just calculate an answer; they invited

you to go in and make a tangible model of the world

with your own hands, and then they acted out the

unfolding reality right before your eyes.” (Waldrop

2002)

1 Introduction
To computer scientists, the act of transforming an idea into working

code is an act of understanding. We assume that this is not because

of a particular characteristic of the scientists in comparison to those

from other disciplines, but because of the strong relation between

our object of study (our domain) and the tools we use, i.e., program-

ming languages. For instance, looking into the code of an algorithm,

a scientist may have a good intuition about the time complexity,

memory complexity, and even about the correctness of the algo-

rithm. A relevant characteristic is that we get this understanding in
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addition to the execution of the program. It is the programming lan-

guage itself that makes explicit some characteristic of the original

problem and allows us to reason about it in a different way.

Petricek (2016) discusses the “episteme
1
, paradigms and research

programmes” of programming language (PL) investigation, opening

the door for new ways of research in the programming language

discipline. The analysis of signs and resemblances in PL appears

among the proposed topics in that work, as one that was hidden

in the current episteme. “If resemblances and metaphors played

fundamental role in our scientific thinking, we would not just gain

interesting insights from them, but we would also ask different

questions” (Petricek 2016). The present work is developed under

the research program proposed by Petricek, but instead of look-

ing at the episteme on which programming language research is

inscribed, we focus on the epistemic
2
component of the actual pro-

gramming languages: how programming languages aid knowledge
discovery. In scientific programming, where knowledge has central

relevance, we hypothesise that the capacity of programming as a

device for knowledge discovery is under-used. One important fea-

ture of programming languages that facilities knowledge discovery
is their formal nature, but we leave this property aside to focus on

the less explored properties. Our interest lies in knowledge discovery
as a result of the act of programming. To this end, we investigate

the use of programming languages in science (section 2) examining

three different patterns of usage (subsection 2.1, subsection 2.2 and

subsection 2.3). Each usage pattern will be depicted with small

case studies, and a discussion about names will follow (section 3).

Finally, the need for a theoretical framework to improve the use of

programming languages in science will be discussed in section 4.

We had two objectives when selecting case studies. Some cases

were chosen because of their relevance to our hypothesis, but others

for their relevance to a particular field. In all cases we hope that

they aid in understanding our exposition.

2 Programming Languages in Science
One scientist is working with data and performs a linear regression.

Her results show that the null hypothesis can be rejected, thus

implying the statistical relation between two variables. Another

scientist is modeling a social-network effect, and she finds that

the model resembles a preferential attachment process. These are

two different examples of what we call a knowledge discovery mo-
ment, a situation that appears several times during the course of

a research based on programming. The first example represents

1
Petricek follows Foucault’s concept of episteme. “An episteme defines the assumptions

that make human knowledge possible in a particular epoch. It provides the apparatus

for separating what may from what may not be considered as scientific.” (Petricek

2016)
2
In this work, we follow Turkle and Papert (1990) with regard the use of the word

epistemology. Instead of having a single form of knowledge, the propositional, we build

on top of the idea of “different approaches to knowledge”.

https://doi.org/10.1145/3079368.3079409
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the most common situation that usually happens at the conclusion

of an experiment, when observing the results. Alternatively, the

second example represents a more subtle knowledge discovery mo-
ment, a moment that may appear through reflection while creating

a computational model. Notwithstanding their differences, both

examples are situations where new insights are mediated by the use

of programming languages. Usually, programming languages are

used for calculation —the first example—, but as they are languages,
they have features to facilitate reflection and deep thought —the

second example. In particular, we have the following underlying

working hypothesis: an important activity of science, and knowl-
edge discovery in general, is the creation of concepts, and concepts

can be thought as elements of a lower (abstract) level under the

cover of a name. It happens that this activity is also important

in programming through programming languages. The relation

between both instances of this activity is not fully exploited nor

understood. In this section we will explore the different uses of

PL in science and how they relate to the exploitation of the differ-

ent knowledge discovery moments. We identify at least three very

different approaches to PL for use in science: a calculation-based

approach, an approach based on domain specific languages (DSLs),

and a simulation based approach. This distinction is fuzzy, but it

will help us to expose different aspects of programming.

2.1 Programming Languages as Calculation Devices
“In effect, [J. C. R. Licklider] explained to them, ev-

eryone at the Pentagon was still thinking of comput-

ers as giant calculators and data processors.” (Wal-

drop 2002)

Computers have been used as scientific calculation devices since

their creation. Fortran established a way to use the computer that

consisted of writing a model, compiling a file and finally execut-

ing it. The main knowledge discovery moment stemming from PL

designed to do computation is the moment when the result is avail-

able, after the execution. In this case, the knowledge is crystallised
in the result. A particular use of these PL that moves away from this

paradigm is the exploratory analysis possible when the PL provides

a read-eval-print-loop: a REPL. Contemporary examples of this

include Mathematica, Jupyter Notebook, RStudio and Matlab. These

tools are useful for both large and small problems. Researchers can

readily probe small aspects of the system and adapt an experimen-

tal plan based on the result of the probes. This is not exploiting

a particular feature of a PL (aside from the REPL)—instead it is

exploiting the interactive computing paradigm, as devised in the

1950s. The role of interactive computing in the programming lan-

guage community has changed over time. Smalltalk provides an

approach to interactivity that is completely different to the REPL, as

can be seen for instance in Goldberg (1984), but this idea is not used

in mainstream scientific research. Also, Mathematica introduced a

way to program in an environment that resembles an interactive

document, and this idea was followed by Python with its Jupyter

Notebook and RStudio. The level of interactivity added to these

environments—for instance, with Bokeh (Bokeh Development Team

2014)—and the enormous progress on performance for numerical

computing put these tools among the favourite options for scientific

programming (Shen 2014). It is worth mentioning that this idea

can be traced back to the WEB environment developed by (Knuth

1984), where LATEX and Pascal code were integrated in a single doc-

ument. An important difference between the WEB environment

and Jupyter is that the former was an exposition of code, a tool to
facilitate understanding of the code.

2.1.1 Case Study: QuantEcon
“QuantEcon is a NumFOCUS fiscally sponsored project dedicated

to development and documentation of modern open source compu-

tational tools for economics, econometrics, and decision making.”
3

This project made an important step forward in the use of pro-

gramming for economics. It gathered disparate research in econom-

ics, then organized and presented this research to the community.

In addition to its quality, the participation of relevant figures as

a Nobel laureate attracted the attention of many researchers of

the field. Among other things, it created a collection of Jupyter

notebooks with a large part of current economic and economet-

ric ideas. A typical notebook from QuantEcon has the content of

a lecture where a specific topic is analysed (see Figure 1). These

notebooks usually include very detailed descriptions of a model,

consistent with a published article, as in Figure 1a, followed by

(or interleaved with) an implementation of the model, as show in

Figure 1b. We have reproduced a small functional unit in Figure 2

and a code snippet of this function is shown in Figure 1c. This code

demonstrates a problem that we wish to expose with this work:

the task of instructing the computer what to do accounts for the

majority of the identifiers. These are strictly mechanical operations.
In this case, the program is a calculation device, translated from

mathematics, and the additions are nuisances required for it to

work: identifiers like self , reshape or slice objects. Our hypothesis

is that a theoretical reader will understand this program, in the

sense that the knowledge crystallised by the programmer will be

recovered
4
. However, it is unlikely that new concepts will emerge

from this exposition, leading to a knowledge discovery moment. We

believe that new concepts will not emerge because it is hard to

relate this code to other concepts creating metaphors and abstrac-

tions. We could create suggestions to improve the implementation

and even to improve the language. However, we think that it is

better to first acknowledge the existence of a particular problem,

then understand its causes and finally propose solutions to it.

2.2 Domain Specific Languages
Domain specific languages (DSL), as the name states, contain ele-

ments proper of their domain while reducing nuisance added by

constructs that are only used for general purpose computation. Our

main focus are those DSL for which the domain is close to the sci-

entist’s domain. In the previous sections we analysed PL that were

meant for computations, and some of them are proper DSLs for

mathematical calculations. For our purposes, those languages are

not considered DSLs because they are more relevant as calculation

tools.

The use of domain specific languages yields different knowledge
discovery moments. When a DSL is used, we have a knowledge dis-
covery moment which can be related to Kuhn’s view of normal
science: the concepts are already defined in the language and the

researcher build on top of these concepts. Note that this language

may encode an existing paradigm or exhibit an entirely new way of

3http://quantecon.org
4
We use the crystallised information created by Hidalgo (2015): the code is a crystallised
version of the writer’s knowledge.
5http://nbviewer.jupyter.org/github/QuantEcon/QuantEcon.notebooks/blob/master/
aiyagari_continuous_time.ipynb

http://quantecon.org
http://nbviewer.jupyter.org/github/QuantEcon/QuantEcon.notebooks/blob/master/aiyagari_continuous_time.ipynb
http://nbviewer.jupyter.org/github/QuantEcon/QuantEcon.notebooks/blob/master/aiyagari_continuous_time.ipynb
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(a) Screenshot of Aiyagari continuous time’s model description.

(b) Extract of the Household class.

(c) Code snippet of method solve_bellman.

Figure 1. Screenshots of a QuantEcon notebook
5
. This notebook

is based on the model of (Achdou et al. 2014).

thinking. However, there is a knowledge discovery moment prior to
this, and this happens in the act of designing a DSL. The challenge

is to model the domain’s concept—the basic axioms—in term of

the metalanguage, and while doing this task a knowledge discovery
moments may emerge. Therefore, the design of DSLs is an interest-

ing moment, and some process like semantic-driven design increase

their usefulness for the creation of knowledge:

“The semantic-driven design process consists of

two major parts. The first part is concerned with
the modeling of the semantic domain, which
is based on the identification of basic seman-
tic objects and their relationships. The second

part consists of the design of the language’s syn-

tax, which is about finding good ways of construct-

ing and combining elements of the semantic do-

main.” (Erwig and Walkingshaw 2014)

It is clear that finding the basic semantic objects and their rela-
tionships are fundamental tasks of science and while doing this, a

knowledge discovery moment emerges. As a downside, this moment

is only offered to the designer of the DSL, not to the users. If the

designers are not specialists in the domain of the language (e.g., a

computer scientist working on a DSL for biochemistry), the possi-

bility of discovery may not be great. A corollary of this fact is that

creation of DSLs should be encouraged to the sciences, in collabo-

ration with computer scientists, as a way to make discoveries.

2.2.1 Case Study: MathMorph
The first case study is MathMorph (MathMorph development team

2000), a DSL for working with mathematical objects, developed in

the late nineties using Squeak, a Smalltalk dialect. This is an example

of the idea from (Priestley 2011) that “[for the Smalltalk community,

programming was thought of] as a process of working interactively

with the semantic representation of the program, using text simply

as one possible interface”
6
. The conclusion of (Notarfrancesco and

Caniglia 2000), where the project is described, shows why it is

relevant to our research:

“While object orientation is normally an abstraction

task, where real things have to be represented in

a virtual space, the same practice has the inverse

result when mathematical notions are modeled. The

model of a mathematical concept is more tangible

than the concept itself. Instead of abstracting, one
experiences the rather unusual feeling of concret-
ing.7

Along these few years we have also noticedmany

interesting facts regarding pedagogy. A few of them

are:

• The students learn Squeak as a natural conse-

quence of thinking about mathematical ideas.

• Well knownmathematical notions suddenly show

unsuspected properties.

• Some theorems are naturally generalised in un-

common ways. As a result, deeper than normal

understanding is achieved.

• Living examples that naively begin as simple

forms of code testing, quickly become rich sources

of new questions and problems.

• The classical barriers between formal definitions

and intuitive ideas are changed into useful and

precise specifications on how to move from the

paper or blackboard to the Squeak world in a

straightforward way.

• Algorithmic thinking and geometry, usually ab-

sent in the conventional approach, get included

in the whole subject of study.” (Notarfrancesco

and Caniglia 2000)

6
Cited in (Petricek 2016)

7
Turkle and Papert (1990) also noted this property. To them, “the computer has a

theoretical vocation: it can make the abstract concrete; it can bring formality down-to-

earth.”
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For the development team, the act of programming is also an act

of knowledge discovery. Even though the project was discontinued,

there are still efforts to learn about abstract mathematics using

Smalltalk programming. For instance, the work on homological

algebra presented in Caniglia (2015), where Smalltalk was used to

understand a mistake in an homological algebra proof. Unlike auto-

mated theorem proving, this is an example of knowledge discovery
through code.

2.2.2 Case Study: Probabilistic Programming
Probabilistic programming languages (PPL) are designed for proba-

bilistic modelling through the addition of two constructs: one that

allows the sampling of random variables, and other that allows for

conditioning on data (Gordon et al. 2014). The development of these

languages is currently very active. A large amount of knowledge is

created as a consequence of the language and not of computation.

An interesting feature of some PPLs is that Bayesian networks can

easily be represented as probabilistic programs (Gordon et al. 2014,

section 3.1). In that way, reasoning about programs is equivalent to

reasoning about joint distributions. From this relation, opportuni-

ties for knowledge discovery are possible by considering inference

techniques driven by the structure of those programs.

In the following we present two examples of inference tech-

niques that were discovered because of the representation as code.

First, Sankaranarayanan et al. (2013) explored the idea of analysing

execution paths (symbolic execution) of probabilistic programs by

finding the probability of satisfaction for a system of constraints.

Second, Ritchie et al. (2015) used the continuation-passing style rep-

resentation to get a faster Metropolis-Hasting proposal. Again, the

code representation of the program is fundamental for the insight.

On this line of thought, the “Design and Implementation of Proba-

bilistic Programming Languages” (Goodman and Stuhlmüller 2014)

was created as an interactive book on probabilistic programming

languages, centered around code. In these cases, the knowledge dis-
covery moments are offered to the designers of the DSL, as suggested

above. This happens because they are forced to think about the

domain in the metalanguage.

Separately, PPL descendants of WinBUGS (Lunn et al. 2000) such

as JAGS (Plummer and others 2003) and STAN (Gelman et al. 2015)

can be seen as DSL for statistical modelling in the sense that models

resemble classical whiteboard statistics. A hierarchical Bayesian

model can be understood as such looking at the code. In this way,

the tool used to reason about the model, and the one used to create

inference are unified.

Bayesian networks themselves deserves further examination. BN

are directed acyclic graphs where each node represents a random

variable and is associated with a conditional probability distribution.

They are interesting for our investigation because they emerged as

a device useful for both representing joint probability distributions

and computing probabilistic queries on that representation. In its

origin, they were a tool to encode probabilities in a computer, but

Bayesian networks turn out to be more than simple data structures,

and led to opportunities for knowledge discovery.

“[Bayesian networks should be seen] not merely

as a passive parsimonious code for storing factual

knowledge but also as a computational architecture

for reasoning about that knowledge” (Pearl 1985)

This new abstraction made a big impact on the Artificial Intelli-

gence and Machine Learning communities, where a large corpus of

research is devoted to what now is called Graphical Models.This

is not a perfect example of our hypothesis as this did not emerge

from observation of code. However, it has a similar characteristic: it

is a computational abstraction with impact on the original domain.

2.3 PL as a Modelling Tool: Simulations
Leaving out the use of statistical inference — a calculation based

approach—, one the most widespread ways in which programming

languages are used in the social sciences is through simulations.

Simulations rely on program execution for the knowledge discovery
moment, but unlike the calculation device, the domain is modelled in

the program. Additionally, they allow for the presence of emergent

phenomena. Scientists model the micro-behaviors and observe the

macro-behavior. This is particularly true in the so-called agent-

based models (ABM) (Macy and Willer 2002). In these frameworks,

the scientist must model two basic things: the agents and their

relations. Additionally, a global constraint may be modeled in the

form of an environment. The expected knowledge discoverymoments
of these models is the emergent behavior and the consequences

of perturbations to the model, i.e., interventions. Here too, the

modeling itself is also an opportunity for learning. The assumptions

about the agents and relations put, either explicitly or implicitly, in

the model become relevant as the result depends on them. A good

programming language should be able to expose these assumptions

as fundamental variables.

In simulation frameworks, as with any DSL, the level of general-

ity in the language imposes constraints on program design. In some

simulations, the domain is already crystallised in the environment,

and the knowledge discovery moments are restricted to its theoretical
framework. This is another instance of Kuhn’s normal science (see
above). Other frameworks allow for more general modeling, at the

cost of making the modelling task harder. A similar effect appears

at model’s level:

“There are some issues related to the application of

ABM [agent-based models] to the social, political,

and economic sciences. One issue is common to all

modeling techniques: amodel has to serve a purpose;

a general-purpose model cannot work. The model

has to be built at the right level of description, with

just the right amount of detail to serve its purpose;

this remains an art more than a science”. (Bonabeau

2002)

It is interesting that the ABM community developed a standard

to describe the simulations: The Overview, Design concepts and

Details (ODD) standard protocol (Grimm et al. 2006). The elements

of ODD can be seen in Table 1. This protocol established the cre-

ation of a document that describes the models and should allow

for a complete re-implementation of the models using only this

document —which is a text document, separated from the code.

We would like to highlight that some aspects of the ODD protocol

(necessarily) refer to elements of a program. Thus, it is possible

that this protocol was created to solve a failure of programming

languages as a communication device. In fact, the authors of the

standard noted their intentions clearly:

“There are two main and interrelated problems with

descriptions of IBMs [individual based-models]: (1)
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Overview

Purpose

State variables and scales

Process overview and scheduling

Design concepts Design concepts

Details

Initialization

Input

Submodels

Table 1. Description of elements from the ODD standard. Table

taken from (Grimm et al. 2006)

there is no standard protocol for describing them

and (2) IBMs are often described verbally without a

clear indication of the equations, rules, and sched-

ules that are used in the model.” (Grimm et al. 2006)

2.3.1 Case Study: NetLogo
One of the programming languages most used in the social sci-

ences is NetLogo (Railsback and Grimm 2011). It is important to

know which features of this language attracted many scientists

from disparate disciplines such as economy, ecology, sociology and

political sciences. NetLogo is a multi-agent version of Logo. Logo

was designed by Feurzeig and Papert in 1967 as a tool to make

programming accessible to children. The principal object of it is the

turtle: it was “an on-screen ‘cursor’ that showed output from com-

mands for movement and small retractable pen, together producing

line graphics”
8
. For many computer scientists, the popularity of

NetLogo in the social sciences may be odd (as it was designed for

children), which is an indication that further research may be nec-

essary to understand the advantages of this language for social

science. There are two elements that may explain this phenomenon.

First, it is a multi-agent system, thus making it suitable for agent-

based modelling. Also, Logo featured the idea of ‘body syntonic’

reasoning:

“The Logo turtle was designed to be ‘body syntonic’,

to allow users to put themselves in its place. When

children learn to program in Logo, they are encour-

age to work out their programs by ‘playing turtle’.

The classic example of this is developing the Logo

program for drawing a circle. This is difficult if you

search for it by analytic means (you will need to find

a differential equation), but easy if you put your-

self in the turtle’s place and pace it out. (The turtle

makes a circle by going forward a little and turn-

ing a little, going forward a little and turning a lit-

tle, etc.).” (Turkle and Papert 1990) (see also Papert

(1980))

Then, it is possible that the popularity of NetLogo
9
is a validation

of Papert’s ideas. Consequently, for simple models NetLogo code

reads as a model of the domain: the percentage of identifiers related

to the domain are high relative to the system identifiers. An example

of NetLogo code is shown in Listing 1: a code snippet for a predator-

prey model
10
.

8https://en.wikipedia.org/wiki/Logo_(programming_language)
9
Interestingly, the name Logo was “derived from the Greek word for ‘word’ or ‘thought’

[λόγος].” (Goldenberg 1982) This relation between ‘words’, ‘thought’ and programming

languages is the basic element of our research.
10http://modelingcommons.org/browse/one_model/2401#model_tabs_browse_info

Listing 1. Predator-Prey Model

; ; P r eda to r−Prey model from h t t p : / / modelingcommons . org

to go
; ; l i s t e n to the hubnet c l i e n t

every 0 . 1

[

l i s t e n − c l i e n t s

display
]

; ; i f wander ? i s t r u e then the and ro i d s wander around the l and s c ape

i f wander ?

[ andro id s−wander ]

; ; the de l ay below keep p l a n t s from growing too f a s t

; ; and p r e d a t o r / prey from l o s i n g p o i n t s too f a s t

every 3

[

i f any ? t u r t l e s

[

p l an t s −regrow

ask s t u d e n t s

[

s e t energy energy − 0 . 5

i f energy <= 0

[ s tuden t−d i e ]

update−energy−moni tor

]

do−p l o t

]

t i c k

]

end

3 The final act: Naming
The literature on naming and programming languages is ample

and the advantages of a good naming practice are very well known.

There is a current effort on software engineering trying to iden-

tify linguistic patterns in source code that are recognisable as bad

practices (Arnaoudova et al. 2016) and the relation of names with

the code’s overall quality (Butler et al. 2009). Our perspective is

not identical to that of the software engineering community, but

shares some elements with it. In particular, we consider naming a

very important part of programming, but specifically we conjecture

that naming allows for a very relevant knowledge discovery moment.
The act of naming is equivalent to the act of making an abstraction,

and abstractions are important outputs of science.

In the early years of software development, users of Fortran

employed single-character variable names. This was partly due

to technical limitations, but sometimes this was thought of as an

imitation of mathematics. While it is true that some mathematical

variables are named with a single character, those variables are

also typically referred to more expressively in natural language in

terms of their properties. Also, naming mathematical objects is an

activity continuously performed, as the names become a means

for abstracting useful and common mathematical objects. Lastly,

mathematicians usually discuss objects in the context of a larger

piece of writing, where single-character abbreviations are defined

before they are referenced. The reader should be able to recognise

all the involved elements in the operations for it to be valid. When

writing code, there is a well-known difference in relevance between

the code and the accompanying text (documentation). The eye of

the reader will go first to the code and later, in case of doubt, her

eye will move to the documentation. This difference in relevance

becomes more important when knowledge discovery is part of the

objectives of coding.

The most well-known programming language which features a

notation inspired by the notation of mathematics is APL—A Pro-

gramming Language (Iverson 2007). The stated properties of nota-

tion that guided APL design were: “ease of expressing constructs

arising in problems, suggestivity, ability to subordinate detail, econ-

omy, and its amenability to formal proof”. We can argue about

https://en.wikipedia.org/wiki/Logo_(programming_language)
http://modelingcommons.org/browse/one_model/2401#model_tabs_browse_info
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whether or not APL fulfilled its goals, but what is relevant to us is

that the language was meant to be a tool of thought: a knowledge
discovery tool.

Another exploration of the relation between mathematical lan-

guage, programming languages and natural languages is the classi-

cal work of Naur (1975). In that work, Naur notes the “awkwardness

at the use of the word language in the context ‘programming lan-

guage”’. He argues that the two main differences between both are:

1) the form (written vs spoken), and 2) the way of understanding the

words (fuzzy vs “perfectly well-defined”). Interestingly, he acknowl-

edge that some uses of natural language aren’t fuzzy, in particular

the use in science, and this is the use of interest for the present

work. Even thought the use in computing is well-defined, we note

that there exists a level of freedom in programming languages: the

freedom of naming.

Since the creation of LISP (McCarthy 1960), there were no strong

technical limitations on identifier naming, and naming became an

important part of programming. The Smalltalk community has a

long tradition of giving a central relevance to names. Beck devoted

a significant amount of his work (Beck 1997) to the use of names

as a communication device. For example, the “Intention Revealing

Messages” are thought of as “the most extreme case of writing for

readers instead of the computers”. Interestingly, this tradition is

also related to knowledge discovery moments. In Wilkinson (2014),

the author explicitly states that “putting a name is the most difficult

part [of programming] as it is creating knowledge”. This idea of

writing for readers was also investigated by Knuth. Working in a

way to relate the code and its accompanying text, he developed

the concept of literate programming (Knuth 1984). In that work, he

stated that:

“Instead of imaging that our main task is to instruct

a computer what to do, let us concentrate rather on

explaining to human beings what we want a com-

puter to do.”

We could rephrase scientific programming as “explaining to human

beings, in a way that new things can be learned, what we want a
computer to do.”

In the aforementioned work, Knuth made also a reflection about

the level of verbosity of WEB’s sections, that can be translated to

others code units:

“The name of a section (enclosed in angle brackets)

should be long enough to encapsulate the essen-

tial characteristics of the code in that section, but it

should not be too verbose. I found very early that

it would be a mistake to include all of the assump-

tions about local and global variables in the name of

each section, even though such information would

strictly be necessary to isolate that section as an

independent module. The trick is to find a balance

between formal and informal exposition so that a

reader can grasp what is happening without being

overwhelmed with details.” (Knuth 1984)

4 Past and Future Work
There are at least two dimensions of work in this area: a quantifica-

tion and a philosophical dimension.

4.1 Quantification
Some of the ideas presented on this work could be quantified. It

would be very informative to know the distribution of sizes of

variable names, the size of functional units and the amount of

code duplication both in scientific code and in non-scientific code.
These variables will show how different scientific code is from non-
scientific code, but the cause of the difference will still be unknown.
Ideally, we would like to have a causal study relating programming

features with scientific knowledge discoveries.

4.2 Philosophical dimension
Additionally, it is good to have a clear understanding of what to

measure. To this end, it is necessary to build a theory; the epistemic

component of the act of programming should be studied. The work

of philosophers could be of help. In the nineteenth century, Frege

et al. (1951) described the relation between objects, concepts and
references. More ideas were developed in the twentieth century, be-

ginning with the work of De Saussure (1916), and Peirce (1931), but

including Foucault (1966) and Barthes (1977). There is a complete

field of science devoted to the research of the use of words, but

what is relevant to us is how the words in code help to understand

and to create new knowledge discovery moments. This enterprise
already started with (Noble et al. 2006), where design patterns were

analysed from a semiotic perspective (the study of sign processing

and meaning-making).

In the work of Tanaka-Ishii (2010), programming itself was anal-

ysed semiotically. This field created (at least) two models of signs:

a two-element model proposed by de Saussure and composed of

the signifier and signified (the dyadic model), and a three-element

model proposed by Peirce and composed of the object, label repre-
sentamen, and interpretant (the triadic model). In the dyadic model,

the two sides of a sign corresponds to the signifier (a label) and the

signified (the concept). For instance, if we analyse the term ‘tree’,

the term itself is the signifier which invokes the concept of a tree,

the signified. By contrast, the triadic model adds a third element. It

is “the representamen (label) that evokes the interpretant (idea or
sense) defining the object (referent). In the example of the tree, the

label ‘tree’ (representamen) evokes the idea of the tree (interpretant),
which designates the referent tree (object)”11. It’s worth mention

that different sign models expose different aspects of the sign.

Tanaka-Ishii studied, among other things, the relation between

semiotic models and programming paradigms: the relation between

the dyadic model and the functional paradigm, and the triadic model

and the object oriented paradigm:

“In functional programs all identifiers are dyadic,

whereas in object-oriented programs dyadic and tri-

adic identifiers are both seen. [. . . ] In the dyadic

model, different uses attribute additional meanings

to dyadic identifiers. In contrast, in the object-oriented

paradigm such meanings should be incorporated

within the identifier definition from the beginning.

Everything that adds meaning to an identifier must

form part of its definition; therefore if two sets of

data are to be use differently, they must appear as

two different structures.[. . . ] That is, a triadic iden-

tifier has its meaning described within its class. If

11
Examples taken from (Tanaka-Ishii 2010).
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two triadic identifiers’ meanings differ in some as-

pect, then the difference must be visible within the

identifiers’ classes.” (Tanaka-Ishii 2010)

This work forms a framework on which we can build a complete

theory that relates the identifiers on code with the creation of

knowledge, but still there are many dots that need to be connected.

5 Conclusions
In linguistic theory, the Sapir-Whorf hypothesis states that lan-

guage determines thought, or at least that its usage and categories

influence thought.
12

It is clear that the language used for modelling

a scientific object will have an influence regarding the discoveries

on this object. As Diaconis put it when discussing reproducing

kernel Hilbert spaces:

“Like all transform theories (think Fourier), prob-

lems in one space may become transparent in the

other, and optimal solutions in one space are often

usefully optimal in the other.” (Berlinet and Thomas-

Agnan 2011, Preface)

To this end, it is beneficial to do more than translate from one

language to another. The problem must be thought of in the sec-

ond language. In our case, the problems must be thought of in the

context of programming languages. Information flows between a

program, its writer and its reader, but once the program is written,

the information is crystallised in its code. When the information

that goes from the code to the reader and that is more than the in-

formation crystallised on it, we have a knowledge discovery moment.
In this work we made the first exposition of a problem regarding

the use of PL in science, and its relation to the moment of the

knowledge discovery. Future works are required to quantify this

hypothesis, and most importantly, to determine the ultimate cause

of this phenomenon: Is it because of a lack of natural expressiveness
of the programming languages, a lack in the capacity to express

thoughts in a way that are easily communicable to humans, or is it

because a failure in the communication of the power of PL to users

outside the computer science community?

The main contribution of this work is to make explicit the need

for a theoretical framework that helps to make programming lan-

guage better tools for understanding in scientific programming—a

need that has been present since the dawn of computer science.

When Dijkstra (1972) encouraged all the programmers to “forget

that FORTRAN ever existed [. . . ] for as vehicle of thought it is no

longer adequate”, he also proposed “the analysis of the influence

that programming languages have on the thinking habits of their

users”. This is still a valid research program and becomes more rel-

evant in the domain of scientific programming. We should embrace

that research program.
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