
Principles of Antifragile Software
Martin Monperrus

June 7, 2017

Abstract
There are many software engineering concepts and
techniques related to software errors. But is this
enough? Have we already completely explored the
software engineering noosphere with respect to er-
rors and reliability? In this paper, I discuss an novel
concept, called “software antifragility”, that is uncon-
ventional and has the capacity to improve the way
we engineer errors and dependability in a disruptive
manner. This paper first discusses the foundations
of software antifragilty, from classical fault tolerance
to the most recent advances on automatic software
repair and fault injection in production. This paper
then explores the relation between the antifragility of
the development process and the antifragility of the
resulting software product.

1 Introduction
The software engineering body of knowledge on soft-
ware errors and reliability is not short of concepts,
starting from the classical definitions of faults, errors
and failures [3], continuing with techniques for fault-
freeness proofs, fault removal and fault tolerance, etc.
But is this enough? Have we already completely ex-
plored the space of software engineering concepts re-
lated to errors? In this paper, I discuss a novel con-
cept, that I call “software antifragility”, which has
the capacity to radically change the way we reason
about software errors and the way we engineer relia-
bility.

The notion of “antifragility” comes from the book
by Nassim Nicholas Taleb simply entitled “Antifrag-
ile” [16]. Antifragility is a property of systems,

whether natural or artificial: a system is antifragile if
it thrives and improves when facing errors. Taleb has
a broad definition of “error”: it can be volatility (e.g.
for financial systems), attacks and shocks (e.g. for
immune systems), death (e.g. for human systems),
etc. Yet, Taleb’s essay is not at all about engineering,
and it remains to translate the power and breadth of
his vision into a set of sound engineering principles.
This paper provides a first step in this direction and
discusses the relations between traditional software
engineering concepts and antifragility.

First, I relate software antifragility to classical
fault tolerance. Second, I show the link between an-
tifragility and the most recent advances on automatic
software repair and failure injection. Third, I explore
the relation between the antifragility of the devel-
opment process and the antifragility of the resulting
software product. This paper is a revised version of
an Arxiv paper [11].

2 Software Antifragility
There are many pieces of evidence of software
fragility, sometimes referred to as “software brittle-
ness”, [15]. For instance, the inaugural flight of Ar-
iane 5 ended up with the total destruction of the
rocket, because of an overflow in a sub-component of
the system. At a totally different scale, in the Eclipse
development environment, a single external plugin
of a low-level optional library can crash the whole
system and makes it unusable (Eclipse bug 334466).
Software fragility seems independent of scale, domain
and implementation technology.

There are means to combat fragility: fault preven-
tion, fault tolerance, fault removal, and fault forecast-

1



ing [3]. Software engineers strive for dependability.
They do their best to prevent, detect and repair er-
rors. They prevent bugs by following best practices,
They detect bugs by extensively testing and com-
paring the implementation against the specification,
They repair bugs reported by testers or users and
ship the fixes in the next release. However, despite
those efforts, most software remains fragile. There
are pragmatic explanations to this fragility: lack of
education, technical debs in legacy systems, or the
economic pressure for writing cheap code. However,
I think that the reason is more fundamental: we do
not take the right perspective on errors.

As Taleb puts it, an antifragile system “loves er-
rors”. Software engineers do not. First, errors cost
money: it is time-consuming to find and to repair
bugs. Second, they are unpredictable: one can
hardly forecast when and where they will occur, one
can not precisely estimate the difficulty of repairing
them. Software errors are traditionally considered as
a plague to be eradicated and this is the problem.

Possibly, instead of damning errors, one can see
them as an intrinsic characteristic of the systems we
build. Complex systems have errors: in biological
systems, errors constantly occur: DNA pairs are not
properly copied, cells mutate, etc. Software systems
of reasonable size and complexity also naturally suf-
fer from errors, as complex biological and ecological
systems do. Formal verification and model-checking
fails to prove them error-free because of this very size
and complexity [15]. Once one acknowledges the nec-
essary existence of software errors in production for
large and interconnected software systems [15, 12], it
changes the game, it calls for new engineering prin-
ciples.

2.1 Fault-tolerance and Antifragility
Instead of aiming at error-free software, there are
software engineering techniques to constantly detect
errors in production (aka self-checking software [20])
and to tolerate them as well (aka fault tolerance [13]).
Self-checking, self-testing or fault-tolerance is not lit-
erally loving errors, but it is an interesting first step.
Instead of shunning errors, one engineers them, or
even let software crash, which is a famous motto of

the Erlang community [2]. This is the right direction
to go to start loving errors.

In Taleb’s view, a key point of antifragility is that
an antifragile system becomes better and stronger un-
der continuous attacks and errors. The immune sys-
tem, for instance, has this property: it requires con-
stant pressure from microbes to stay reactive. Self-
detection of bugs is not antifragile. Software may de-
tect a lot of erroneous states, but it would not make
it detect more.

For fault tolerance, the frontier blurs. If the fault
tolerance mechanism is static there is no advantage
from having more faults and there is no antifragility.
If the fault tolerance mechanism is adaptive [8] and
if something is learned when an error happens, the
system always improves. We hit here a first charac-
teristic of software antifragility.

A software system with dynamic, adaptive fault
tolerance capabilities is antifragile: exposed to
faults, it continuously improves.

2.2 Automatic Runtime Bug Repair
Fault removal, i.e. bug repair, is one means to at-
tain reliability [3]. Let us now consider software that
repairs its own bugs at runtime and call the corre-
sponding body of techniques “automatic runtime re-
pair” (also called “automatic recovery” and also “self-
healing” [9]).

There are two kinds of automatic software repair:
state repair and behavioral repair [10]. State repair
consists in modifying a program’s state during its
execution (the registers, the heap, the stack, etc.).
Demsky and Rinard’s paper on data structure repair
[6] is an example of such state repair. Behavioral
repair consists in modifying the program behavior,
with runtime patches. The patch, whether binary or
source, is synthesized and applied at runtime, with
no human in the loop. For instance, the application
communities of Locasto and colleagues [9] share be-
havioral patches for repairing faults in C code.

As said previously, a software system can be con-
sidered as antifragile as long as it learns something

2



from bugs that occur. Automatic runtime bug repair
at the behavioral level corresponds to antifragility,
since each fixed bug results in a change in the code,
in a better system.

Adaptive runtime repair means “loving errors”:
a software system with runtime bug repair capa-
bilities loves errors because those errors continu-
ously trigger improvements of the system itself.

2.3 Failure Injection in Production
If you really “love errors”, you always want more of
them. In software, one can create artificial errors us-
ing techniques called fault and failure injection. So,
literally, software that “loves errors” would continu-
ously self-injects faults and perturbations. Would it
make sense?

By self-injecting failures, a software system con-
stantly exercises its error-recovery capabilities. If the
system resists those injected failures, it will likely
resist similar real-world failures. For instance, in a
distributed system, servers may crash or be discon-
nected from the rest of the network. Consequently, a
failure injector may randomly crash some servers (an
example of such an injector is the Chaos Monkey [4])
to exercise the corresponding resilience capabilities.

Ensuring the occurrence of faults has three posi-
tive effects on the system. First, it forces engineers
to think of error-recovery as a first-class engineering
element: the system must at least be able to resist
the injected faults. Second, it gives engineers and
users confidence about the system’s error recovery
capabilities; if the system can handle those injected
faults, it is likely to handle real-world natural faults
of the same nature. Third, monitoring the impact of
each injection gives the opportunity to learn some-
thing on the system itself and the real environmental
conditions.

Because of these three effects, injecting faults in
production makes the system better. This corre-
sponds to the main characteristic of antifragility:
“the antifragile loves error”. It is not purely the in-
jected faults that improve the system, it is the im-
pact of injected faults on the engineering ecosystem

(the design principles, the mindset of engineers, etc).
I will come back on the profound relation between
product and process in Section 3.

A software system using fault self-injection in
production is antifragile, it decreases the risk of
missing, or rotting error-handling code by con-
tinuously exercising it.

Injecting faults in production must come with a
careful analysis of the the dependability losses. There
must be a balance between the dependability losses
(due to injected system failures) and the dependabil-
ity gains (due to software improvements) that result
from using failure injection in production. Measuring
this tradeoff is the key point of antifragile software
engineering.

The idea of fault injection in production is uncon-
ventional but not new. In 1975, Yau and Cheung
[20] proposed inserting fake “ghost planes” in an air
traffic control system. If all the ghost planes land
safely while interacting with the system and human
operators, one can really trust the system. Recently,
a company named Netflix released a “simian army”
[7, 4], whose different kinds of monkeys inject faults
in their services and datacenters. For instance, the
“Chaos Monkey” randomly crashes some production
servers, and the “Latency Monkey” arbitrarily in-
creases and decreases the latency in the server net-
work. They call this practice “chaos engineering”.
When fault injection is done in production on a spe-
cial day under full control (as opposed to automat-
ically at any arbitrary point in time), it is called a
GameDay exercise [1].

From 1975 to today, the idea of failure injection in
production has remained almost invisible. This con-
cept is not even mentioned in the cornerstone paper
by Avizienis, Laprie and Randell. [3], and the aca-
demic literature on this topic si very scarce. However,
the nascent chaos engineering community may signal
a real shift.

3



3 Software Development Pro-
cess Antifragility

On the one hand, there is the software, the product,
and on the other hand there is the process that builds
the product. In Taleb’s view, antifragility is a concept
that also applies to processes. For instance, he says
that the Silicon Valley innovation process is quite an-
tifragile, because it deeply admits errors, and both in-
ventors and investors both know that many startups
will eventually fail. I now discuss the antifragility
aspect of the software development process.

3.1 Test-driven Development
In test-driven development, developers write auto-
mated tests for each feature they write. When a bug
is found, a test that reproduces the bug is first writ-
ten; then the bug is fixed. The resulting strength
of the test suite gives developers much confidence in
the ability of their code to resist changes. Concretely,
this confidence enables them to put “refactoring” as a
key phase of development. Since developers have an
aid (the test suite) to assess the correctness of their
software, they can continuously refine the design or
the implementation. They refactor fearlessly, having
little doubts that they can break anything that will
go unnoticed. Furthermore, test-driven development
allows continuous deployment, as opposed to long re-
lease cycles. Continuous deployment means that fea-
tures and bug fixes are released in production in a
daily manner (and sometimes several times a day).
It is the trust given by automated tests that allows
continuous deployment.

What is interesting with test-driven development is
the second order effect. With continuous deployment,
errors have smaller impacts. No massive groups of
interacting features and fixes arrive in production at
the same time. When an error is found in production,
the new version can be released very quickly before a
catastrophic propagation.

Also, when an error is found in production, it ap-
plies to a version that is close to the most recent ver-
sion of the software product (the “HEAD” version).
Fixing an error in HEAD is usually much easier than

fixing an error in a past version, because the patch
can seamlessly be applied to all close versions, and
because the developers usually have the latest ver-
sion in mind. Both properties (ease of deployment,
ease of fixing) contribute to minimize the effects of
errors. We recognize here a property of antifragility
as Taleb puts it: “If you want to become antifragile,
put yourself in the situation “loves errors” [...] by
making these numerous and small in harm.” [16].

3.2 Bus Factor
In software development, the “bus factor” measures
to what extent people are essential to a project. If
a key developer is hit by a bus (or anything similar
in effect), could it bring the whole project down? In
dependability terms, such a consequence means that
there is a failure propagation from a minor issue to a
catastrophic effect.

There are management practices to cope with this
critical risk. For instance, one technique is to regu-
larly move people from projects to project, so that
nobody concentrates essential knowledge. At one ex-
treme is “If a programmer is indispensable, get rid
of him as quickly as possible” [19]. In the short-
term, moving people is sub-optimal. From a people
perspective, they temporarily lose some productiv-
ity when they join a new project, in order to learn
a new set of techniques, conventions, and communi-
cation patterns. They will often feel frustrated and
unhappy because of this. From a project perspective,
when a developer leaves, the project experiences a
small slow-down. The slow-down lasts until the rest
of the team grasps the knowledge and know-how of
the developer who has just left. However, from a
long-term perspective, it decreases the bus factor. In
other terms, moving people transforms rare and irre-
versible large errors (project failure) into lots of small
errors (productivity loss, slow down). This is again
antifragile.

3.3 Conway’s Law
In programming, Conway’s law states that the “orga-
nizations which design systems [...] are constrained to

4



produce designs which are copies of the communica-
tion structures of these organizations” [5]. Raymond
famously put this as “If you have four groups working
on a compiler, you’ll get a 4-pass compiler” [14]

More generally, the engineering process has an im-
pact on the product architecture and properties. In
other terms, some properties of a system emerge from
the process employed to build it. Since antifragility is
a property, there may be software development pro-
cesses that hinder antifragility in the resulting soft-
ware and others that foster it. The latter would be
“antifragile software engineering”.

I tend to think that the engineers that set up an-
tifragile processes better know the nature of errors
than others. I believe that developers enrolled in an
antifragile process become imbued of some values of
antifragility. Tseitlin’s concept of “antifragile organi-
zations” is along the same line [17]. Because of this,
I hypothesize that antifragile software development
processes are better at producing antifragile software
systems.

4 Conclusion
This is only the beginning of antifragile software en-
gineering. To accomplish the vision presented here,
research now has to devise sound engineering tech-
niques regarding self-checking, self-repair and failure
injection in production. Because of the amount of
legacy software, a major research avenue is to invent
ways to develop antifragile software on top of existing
brittle programming languages and execution envi-
ronments. That would be a 21th century echo to Von
Neuman’s dream of building reliable systems from
unreliable components [18].

Acknowledgements: I would like to thank B.
Cornu, M. Martinez, B. Randell, L. Seinturier, C.
Vidal, E. T. Barr and the anonymous reviewers for
their valuable feedback on this paper.

References
[1] J. Allspaw. Fault injection in production. Com-

munications of the ACM, 55(10):48–52, 2012.

[2] J. Armstrong. Erlang. Communications of the
ACM, 53(9):68–75, 2010.

[3] A. Avizienis, J.-C. Laprie, B. Randell, et al.
Fundamental concepts of dependability. Techni-
cal report, University of Newcastle upon Tyne,
2001.

[4] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein,
L. Kosewski, J. Reynolds, and C. Rosenthal.
Chaos engineering. IEEE Computer, 33(3):35
– 41, 2016.

[5] M. E. Conway. How do committees invent?
Datamation, 14(4):28–31, 1968.

[6] B. Demsky and M. Rinard. Automatic detection
and repair of errors in data structures. ACM
SIGPLAN Notices, 38(11):78–95, 2003.

[7] Y. Izrailevsky and A. Tseitlin. The Netflix
simian army. http://techblog.netflix.com/
2011/07/netflix-simian-army.html, 2011.

[8] Z. T. Kalbarczyk, R. K. Iyer, S. Bagchi, and
K. Whisnant. Chameleon: A software infrastruc-
ture for adaptive fault tolerance. IEEE Trans-
actions on Parallel and Distributed Systems,
10(6):560–579, 1999.

[9] M. E. Locasto, S. Sidiroglou, and A. D.
Keromytis. Software self-healing using collab-
orative application communities. In Proceedings
of the Symposium on Network and Distributed
Systems Security, 2006.

[10] M. Monperrus. A critical review of ”automatic
patch generation learned from human-written
patches”: Essay on the problem statement and
the evaluation of automatic software repair. In
Proceedings of the International Conference on
Software Engineering, 2014.

[11] M. Monperrus. Principles of antifragile software.
Technical Report 1404.3056, Arxiv, 2014.

[12] H. Petroski. To Engineer is Human: The Role
of Failure in Successful Design. Vintage Books,
1992.

5

http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html


[13] B. Randell. System structure for software fault
tolerance. IEEE Transactions on Software En-
gineering, SE-1(2):220 –232, june 1975.

[14] E. S. Raymond et al. The jargon file. http:
//catb.org/jargon/, last accessed Jan. 2014,
-.

[15] M. Shaw. Self-healing: softening precision to
avoid brittleness. In Proceedings of the first
workshop on self-healing systems, 2002.

[16] N. N. Taleb. Antifragile. Random House, 2012.

[17] A. Tseitlin. The antifragile organization. Com-
mun. ACM, 56(8):40–44, Aug. 2013.

[18] J. von Neumann. Probabilistic logics and the
synthesis of reliable organisms from unreliable
components. Automata Studies, 1956.

[19] G. M. Weinberg. The psychology of computer
programming. Van Nostrand Reinhold New
York, 1971.

[20] S. Yau and R. Cheung. Design of self-checking
software. In ACM SIGPLAN Notices, volume 10,
pages 450–455. ACM, 1975.

6

http://catb.org/jargon/
http://catb.org/jargon/

	Introduction
	Software Antifragility
	Fault-tolerance and Antifragility
	Automatic Runtime Bug Repair
	Failure Injection in Production

	Software Development Process Antifragility
	Test-driven Development
	Bus Factor
	Conway's Law

	Conclusion

