From Software Creationism to Software Evolutionism

Francois-René Rideau

TUNES Project
fare@tunes.org

Abstract

The lives we live are woven around the stories we tell. This is true
of programmers as of all humans. Now the greatest of all stories
are origin stories. In a first part, I will examine the origin stories
of software, from simple tales of software creation to elaborate
theories of software evolution. As I do, I will relate these stories to
the tools they explain and the technological realities we bring about
by following them. In a second part, I will conclude by reflecting
on storytelling, on the progression of the above stories, and on what
lies beyond. Stories are fun! And they subtly inform us. Let me tell
you a good story...

Keywords Creationism, Evolutionism, Software Engineering,
Tools, Storytelling, Logogony, Anthropodicy

1. Introduction and Disclaimer
1.1 Logogonies and Anthropodicies

If you have to structure software along informal design patterns
rather than formal abstractions, you have run out of language (to
quote Rich Hickey). But if you can’t recognize and discuss infor-
mal patterns in the structure of software development, you have not
yet entered the realm of language with respect to software engi-
neering.

Now the most powerful patterns about how humans behave
are stories: they explain the behavior of a protagonist in terms
of purposes and challenges, with causes and consequences for
success and failure. Human brains are attuned to stories, whether
implicit or explicit, and humans are wont to cast themselves into
roles defined by stories. Furthermore, the most powerful stories are
cosmogonies and theodicies: a cosmogony tells the origin of the
existence of the Universe, and the role of God (or Gods) in this
origin; a theodicy is a trial of those Gods, to explain the existence of
Evil. This essay explores the most powerful stories about Software,
logogonies and anthropodicies: a logogony tells the origin of the
existence of Software, and the role of Man (or Men) in this origin;
an anthropodicy is a trial of Man, to explain the existence of Bugs.

1.2 Claims and Non-Claims

This essay should by no means be construed as either insulting or
vindicating anyone’s religious or irreligious beliefs regarding cos-
mogonies. Indeed this essay makes no claim regarding the origins
of Man — it only discusses the origins of Software! This essay
doesn’t even make any specific claim as to which story best ex-
plains the origins of which software — it only tries to make each
logogony understood, as well as its implications. Each reader can
take it from there. If the presented story arc does promote a thesis
about the origins of software, in the end it is that, as far as the emer-
gence of software goes, Man is no God — which should hardly
offend anyone.

Still, this essay does make a claim: that stories matter — that
you should examine the stories you live by, be careful which you

choose to accept or to reject, and constantly refine them. For they
will shape you. So yes, question my beliefs; and question your own
— that’s the point, whichever your or my beliefs are.

1.3 From Uber-God to Underdog, and Beyond

In the next two parts of this essay, I explore a gamut of increasingly
elaborate logogonies, and accompanying anthropodicies — stories
about how software, and accompanying bugs, come into existence.
First, creationist stories; then, evolutionist stories. To each story, we
associate tools that humans use while writing software, that each fit
into the narrative yet not the previous ones.

In a second part of this essay, I step back from the stories
themselves, and discuss stories as a tool: what we can tell about
them, how they shape our behavior. I then conclude with some
remarks about what to expect from future stories.

2. Software Creationism
2.1 The Simplest Logogony

How does software come into existence? Isn’t it obvious? If you
ask a layman or a newbie, his explanation might be as follows:

At first the machine was uninitialized and blank; then Man said:
“Let Software be such” — and so Software was.

This simplest of stories is Software Creationism: it casts the
programmer as a God Almighty outside and above the machine;
the software is His creation, His proxy, embodied in the machine.

This belief not only comes naturally to non-programmers when
confronted with the apparition of software; it was also historically
the first logogony assumed; and it is still the tacit logogony under-
lying most undergraduate computer science education: in exercises
and tests, assignments and projects, students are expected to pro-
duce a perfect solution to a perfect specification, from what is de-
fined arbitrarily as “scratch”, whether on paper or on a restricted
test machine. Their code is evaluated once by the teacher; it must
stand alone and neither rely on any code by anyone else nor con-
tribute to such.

No programming tools are necessary in this logogony; just pen
and paper to write the perfect program, and a switchboard to insert
the program into the machine. A perfect Programmer-God does
not need tools: He transmits His perfect ideas to the machine
directly in its memory in binary (or base ten, etc.). Programming
the machine is best done directly in the machine’s language, for
optimum representation of the God’s perfect idea.

Indeed, that’s not how software is written these days — which
only shows that this naive logogony has long lost its dominance.

2.2 The Simplest Anthropodicy

Software creation by a superior God is a beautiful story; however,
anyone who ever endeavors to program soon realizes that programs
seldom run perfectly at the first try, or even the second. Bad things
happen: bugs, tyops, mismanipulations, cosmic rays, malfunctions,
errors, even outright mistakes.



If the Programmer-God is perfect (at least once trained) — then
whence do Bugs come?

Sophisticated philosophers will claim that while a perfect Pro-
grammer has a perfect program in mind, its rendition onto an im-
perfect finite machine is necessarily limited in form by physical
constraints — a mere shadow of its platonic ideal.

But most people readily rush to the simplest explanation: the
Devil. A devil modifies software in a way counter to God’s intent.
Whether this Devil is an opposing force outside God, a personality
defect within God, or a necessary artefact of the laws of Nature that
God created — is unclear and might not really matter. What clearly
matters is that bad things are symptoms of the presence of an Evil
force.

2.3 The Birth of Tools

To fight the Devil, the Programmer-God invents tools: blinkenlights
and punched cards (and adhesive tape) are used so the Programmer-
God may monitor as well as write the code. Thus programs can be
double checked, fixed, retried, stored, despite any failures intro-
duced by the Devil. Programs must be read as well as written, de-
coded as well as coded, and thus are born programming languages
— starting with Assembly, to recompute label addresses and jump
offsets when code is modified. Software development practices are
developed, to be followed religiously.

From a better (or less bad) theory of programming, we thus get
better (or less bad) tools — these tools improve programming by
coping with its identified imperfections. This will continue to be
true as we improve our logogonies.

Interestingly, anytime we find a new and hopefully better lo-
gogony, we will always be able consider a variant of it where some
dark forces conspire to undo or corrupt what the creative forces
strive to achieve. Thus, the idea of such opposing forces is a univer-
sal “mixin” for logogonies, the devil mixin — our first storytelling
meta-tool.

24 Layered Creation

While naive software creationism can adequately explain small
programs, the theory quickly reaches its limits: large working pro-
grams just do not spring fully armed from the head of Man. In a
more refined logogony, Man still has an essentially perfect idea of
the Program, but imperfections of the Machine require creation in
multiple, neatly organized layers:

On the first day, Man separated requirements from bugs. On
the second day, Man divided the program into routines... On the
seventh day, Man rested as the demo ran flawlessly.

This logogony leads to new conceptual tools: top-down design,
software architecture in nice layers, flow-charts, the waterfall pro-
cess. With it come divide-and-conquer algorithms. In terms of lan-
guages, it layers a FORmula TRANslator on top of Assembly.

2.5 [Iterated Creation

Now, as an anthropodicy, the devil mixin applies to this story of
Layered Creation of Software: at each of the steps, the Devil may
cause mistakes. This leads to a slightly modified approach to lay-
ereed creation: iterating the waterfall process, until the code is sta-
ble enough, then start a new layer of work.

At first, Man wrote a single-file prototype. Afterwards, Man
worked on an alpha version, then a beta. Eventually, Man released
vl, v2, v3... At last Man produced a stable version — although, He
keeps issuing patch releases. (Be worried when He stops)

Each version is limited in resources and has to make tough
choices and compromises that leave behind a layer of code fossils
that you discover when you dig in the source code.

This suggests a new logogony, in which Man cannot create
entire software systems in one act, if only because of the sheer

amount of work required. Instead Man creates software in many
steps, starting from foundations, building layers upon layers, boot-
strapping complex structures from simpler ones, shaping tools and
tool-making infrastructures, replacing parts with better ones as the
need and opportunity arises, building scaffolding that is destroyed
later possibly leaving fossils along the way — all according to a
carefully designed master plan.
In other words, Iterated Creation is but another name for...

2.6 Intelligent Design

Intelligent Design is the most common logogony among software
engineers, indeed implied by their very claimed title—because it
flatters them: it recognizes enough of the difficulty of programming
to set professionals above students and amateurs who can only
write small programs; yet it affirms that professionals tame big
complex software issues through the systematic endeavor of their
Manly brainiac powers. They are intelligent and in control.

With this logogony are elaborated such tools and concepts as
algebraic data structures and algorithms, operating systems, source
code, compilers, compiler-compilers, build systems, modelling
tools, hierarchically layered systems, the iterated waterfall process,
release cycles, and all kinds of neat engineering practices.

Now of course, this logogony can be enhanced with the devil
mixin, at which point new tools are engineered to counter the
chaos introduced by the Devil: error messages, loggers, tracers
and single-steppers to help locate bugs; line-editors to modify the
Program; acceptance testing to validate It.

2.7 Polytheism

Another useful mixin for logogonies is the polytheism mixin. In
this story modifier, there isn’t one Man, with one Master Intent
and consequent actions, but a lot of Men (including Women), each
having Their part in creating the Software, each with Their own
intent and actions.

In some variants, it may be that these many Men are but facets of
a same unique Man, who takes multiple roles to address the multi-
faceted endeavor of Software design; or it may be that Man’s intent
changes with time, or that Man is moody and has tantrums.

Man’s ways are impenetrable to Software, but enhanced theo-
ries of what Man is lead to the introduction of new tools. To ad-
dress multiple programming Men, files are invented; as Men and
Their work get organized in hierarchies, so are files hierarchically
organized in (sub)directories. Source code comments and formal
documentation serve to convey intent and content between Men.
Machines are time-shared, operating systems grow to manage mul-
tiple users, and eventually multiple users at the same time, each
running multiple processes. Communication protocols are devel-
oped to exchange data between machines, between machines and
Men, between Men.

The devil mixin can also be combined with the polytheism
mixin. Each Man could have his Devil — failures in his person-
ality traits. The Devil could be chaos in way that Men try to work
with each other. The Devil may be a Man himself — a malicious
programmer. Each of these explanations for errors in Man’s Design
leads to new techniques to address the identified sources of error.
Better management techniques are developed; programmers review
each other’s code; user accounts are protected by passwords; re-
sources have usage restrictions; files are backed up; redundancy
checks are added to communication; errata complete documenta-
tion, and pages are intentionally left blank to prepare for them.

2.8 Limits to Intelligence

Intelligent Design was a much improved logogony compared to
its predecessors; but sooner or later, it too reaches limits in its
ability to describe reality accurately: the design of most software



is just really bad. Whether you consider the end result or the
process to get there, you find that it shines neither by its efficiency
nor by its elegance. Not only are most prototypes no good at all,
most software projects are cancelled before they are shipped, or
scratched shortly thereafter — for good reason. A lot of work is
wasted without any positive result to show for it. It isn’t rare that
good ideas were discarded in favor of bad ideas. Even when things
work, it is often for the wrong reasons; and pieces of code that
survive are used in ways they were not intended.

The issue isn’t that errors creep in that corrupt the implementa-
tion of a perfect idea; the issue is that the idea was far from perfect
to begin with. As far as creator gods go, Programmers are only
so bright. Men have “bounded rationality”. In plain words, we are
plain stupid. Thus, the next stepping stone on the way towards bet-
ter logogonies is: Unintelligent design.

2.9 Unintelligent Design

The Programmer-God may have an intent, but He’s a blind idiot
who doesn’t quite know what it is he wants or how to achieve it. He
not only makes gross mistakes, he goes on wild goose chases that
lead nowhere, and sets impossible goals while ignoring obvious
truths.

Tools to help Him design programs will thus include helpful
messages from his compilers for error diagnostic and recovery.
Their role is not to tell an intelligent programmer “the devil crept in
while you weren’t looking, just have a look here, you can obviously
see him and chase him”, it is to tell the unintelligent programmer
“what you did was stupid, here is the explanation why”, for it would
be hard for his limited intellect to figure it out all by himself. Syntax
checking, type checking and various kinds of advanced semantic
checking are invented to catch the more or less obvious errors and
converge more quickly towards what the programmer would mean
if only he were capable of forming coherent intent.

Interactive help, manuals and hints constantly remind Man of
things that He should know better. Integrated development envi-
ronments help Man play with the code and get faster answers as
to whether or not his ideas make sense. Software interfaces are
made idiot-proof by making languages more abstract and complet-
ing them with ample compile-time and run-time checking. Work
is divided into “modules”, so that what limited intelligence there
is can be focused in module implementation, whereas using mod-
ules through their public interfaces requires much less intelligence;
complexity is thus managed away from stupid users. Good design
ensures all choices that Man makes can be taken based on a shal-
low limited view of the world, the only kind that fits the program-
mer Man’s tiny brain. There is no shortage of imaginable tools and
prosthetic devices to help Man cope with his mental disabilities;
and these tools are themselves limited mainly by the inability of
their own Manly programmers.

When a devil adds machine malfunction to operator dysfunc-
tion, testing becomes something to take seriously and systemati-
cally. When multiple gods are involved, the many resulting pro-
cesses running at the same time must be protected from each other;
the software is divided in many parts, that are tested separately; and
contracts for what happens at their interface are attemptedly defined
and enforced. Because the programmer gods cannot be trusted to
remember all the issues with the software, some software must be
used to systematically track those bugs and issues. When some of
the programming Men are malicious, you’re glad they are idiots,
too, and you bury them under the weight and complexity of se-
curity features that will catch each of the more obvious malicious
types of behavior.

2.10 Progress through Humility

One trend can already be observed in all these stories: they each
chip away at the supposed greatest of Man, identify more of His
imperfections; yet, acknowledging these imperfections is precisely
what enables the invention of tools to cope with these imperfec-
tions, which themselves enable the creation of greater software.
Greater humility is what makes progress possible.

Also note that the tools tell the story, even when we don’t make
the story explicit. Why do you use a typechecker? Because you
make type errors. What if you don’t use a typechecker. You still
make type errors and pay the price. Whatever stories you tell others
to impress them, or tell yourself to boost your own ego, the tools
you choose to use (or fail to use) tell a more honest story about
yourself.

But how far does Man have to humiliate Himself before a truth-
ful story emerges about the origins of Software? If Software isn’t
the Triumph of the Will of Man, then what really is the driving Force
behind Software? Before we can give answers to these question, we
have to change our point of view...

2.11 Lamarckism

Whether software is designed by intelligent or stupid Men, or by
something else altogether, we may importantly understand that
software changes to adapt to new circumstances: new goals, new
programmers, new customers, new insight, new technologies, etc.
And so we come to focus on the nature of this change through time,
rather than just on its product at a given moment. Such is Software
Lamarckism.

Filesystems may remember many versions of the files they hold,
each with a different version number. Software releases are num-
bered too. Because many Men may be working at a time, a piece of
software may exist along many different versions; moreover, these
versions are not in a strict linear order, but may come in branches
that sometimes diverge from each other, and sometimes merge back
together. "Ports" from one language to another, and "inspiration"
from one project to the next, are other ways that information is
copied from one Software project to another.

To understand the differences introduced, whether they are in-
telligent, stupid or malicious and what to do of them, new tools
compute differences between files. To merge the intelligent changes
and the fixes to the stupid and malicious ones along the many dif-
ferent branches, tools are created to apply computed differences to
branched files. Revision control and change management is born,
and continuous backup remembers all previous versions of tracked
files.

Lamarckism is not a complete theory of why and how change
happens, but it introduces a useful focus on change. It is a Great
Micxin that can be applied to all the previous logogonies, a starting
point for more elaborate theories that will explain the development
of software in the terms of this incremental process of change.

3. Software Evolutionism
3.1 Supernatural Selection

Unintelligent Design, while acknowledging Man’s stupidity at
writing software in the small, still posits His grand design for build-
ing software in the large. How is this position defensible?
Lamarckism, by shifting the spotlight towards the change pro-
cess, leads to asking why and how programmers lacking complete
understanding choose to keep or change some or some other parts
of the software. The immediate answer is that as Men write, they
stumble upon good or bad features that they winnow by propa-
gating the good and by eliminating the bad. The software writing
process is thus some kind of artificial selection, under the careful,
intelligent guidance of the Programmer-God. God impresses upon


http://www.theshrubbery.com/udn/

the process a definite direction, Progress, and otherwise lets soft-
ware evolve organically in this divine order. Judging software be-
ing much easier than writing software, it is defensible for Man to be
good at the former even though he’s bad at the latter. This logogony
is Supernatural Selection.

With this logogony, new tools are selected into prominence.
Prototyping tools help Man flesh out as many ideas as possible
as quickly as possible, so he may select the correct ones. Formal
specifications help define what software should be doing, without
worry about how it will be doing it. Heuristic search algorithms use
intelligently designed strategies to systematically explore spaces
of potential solutions too large to be explored by the programmer
themselves. The combination of these two approaches leads to
declarative programming, whereby Man focuses on intent, and
delegates implementation to the machine.

From one evaluation phase to the next, programs are trans-
formed through systematic metaprograms. To prevent the devil
from corrupting software, formal proofs are developed that per-
fectly exclude undesired behavior. To coordinate multiple Men,
software modules separate interface from implementation, allow-
ing for experimentation and adaptation separately in each part; ra-
tional developer communities are created, conferences are given,
journals are published.

This whole approach has also been called the First Wave of
Cybernetics. It combines an understanding of the natural dynamics
of software with a faith in the ultimate power of an intelligent
and purposeful Programmer-God, culminating with expert systems
using explicit knowledge representation in an attempt to solve
complex real-world problems.

3.2 Teleological Evolution

The logogony of Supernatural Selection obviously suffers from the
same shortcoming as did the theory of Intelligent Design before
it, in that it supposes that the Programmer-God (or at least some
of them) are supremely intelligent as regards judging the quality
of software change. This shortcoming is obvious once the logogo-
nies are articulated as clear theories, rather than adopted without a
thought by mimetism or what seems to work. An immediate im-
provement over that logogony is thus to stop believing in Men as
supremely intelligent Programmer-Gods. Men may guide the evo-
lution of software, but their contribution to the process is hardly an
overall intelligent coherent purpose; rather it is through a number
of interventions based on partial knowledge, intuition, randomness,
towards a progress that can be felt but not defined. Such is the the-
ory of Teleological Evolution.

With the transition from intelligent guidance to unintelligent
guidance, we are led to the appearance of new tools, that roughly
correspond to the Second Wave of Cybernetics. Genetic Algo-
rithms, supervised learning through neural networks, probabilis-
tically approximately correct learning methods allow to mine in-
formation from large databases without any explicitly designed
representation of knowledge. Weakly structured computations en-
able data manipulation despite limited understanding. At a smaller
scale, programmers are satisfied with randomized algorithms that
have good enough performance in practice despite having dreadful
worst case guarantees. To protect from the Devil, checksums and
probabilistic proofs can be more useful than unattainable formal
proofs. To synchronize multiple Programmer-Gods, user commu-
nities come to prominence: users, though less proficient than devel-
opers, are those who possess the most direct distributed knowledge
of what makes the software useful or not.

The logogony of Teleological Evolution loosens the strictures
of Design or of Supernatural Selection, and opens the space for
practical software solutions to problems beyond the full grasp of
programmers. While it reckons the importance of reasonable en-

deavor, this importance is also de-emphasized; indeed, even reason
can be seen as but a fast-track internal process of random produc-
tion and selection inside the programmer’s mind, as guided by his
godly intuition. In the end, Teleological Evolution embraces an un-
fathomable mystical intuition as the ultimate divine source of cre-
ation.

3.3 Natural Selection

As far as logogonies go, the notion of evolution under manly guid-
ance was an improvement over that of direct design by purposeful
Men, which was itself an improvement over the notion of direct cre-
ation. But in each case, this was only pushing back one level the as-
sumption of a driving intent external to the world. Real evolutionary
theory does away with this assumption. Survival of the fittest does
not suppose an external criterion of fitness to which living creatures
are submitted; rather, survival itself is the only criterion for sur-
vival, tautological and merciless. Survival is its own purpose: those
programs that survive—survive; those that don’t—don’t. Changes
that improve the odds that their host software should survive and
propagate, thereby statistically tend to propagate themselves and
colonize their respective niches. Changes that decrease the odds
that their host software should survive and propagate, thereby sta-
tistically fail to propagate themselves and eventually disappear.
Changes that best fit a niche and not others—survive in that niche
and not others. How software changes help fit a niche decides
whether the changes survive and spread, not whether Man explic-
itly and correctly anticipated and intended those changes to be suc-
cessful in particular ways.

The cumulative result of this natural selection is an evolution-
ary process that favors bundles of traits that tend towards their own
reproduction. This freewheeling evolution necessitates no godly in-
tervention, neither by an intelligent conscience, nor by madmen.
More remarkably, programmers are no gods above it, and their ac-
tions are no such interventions. Programmers are but machines like
others, bundles of self-reproducing traits competing to exploit the
resources of the universe. As compared to other machines in this
programming universe, certainly programmers are unique and dif-
ferent — everyone’s all unique and different; that doesn’t exempt
them from the laws of natural selection. Programmers are machines
among others, trying to survive in a wild machine-eats-machine
world; their actions are their attempts to survive and reproduce by
gaining an edge in the race for ever more efficient acquisition and
use of reproductive programming resources. Their failure means
their code stops being used and is forgotten. If God exists, then he
is not Man; and ever since Man created Software, God has just been
relaxing, sitting back and enjoying the show. Software Evolution is
not directly controlled by Man and not actively guided by God, it
is God’s Spectator Sport, and Man is a competitor among others.
Such is the logogony of Natural Selection.

3.4 Software Darwinism

Natural Selection, unlike Supernatural Selection or Teleological
Evolution, is what (software) darwinists mean when they speak of
(software) “evolution”.

With this perspective on software development, we gain new
mental models for development processes. We think of software in
terms of self-sustaining systems, that evolve and compete based on
their ability to survive and spread. We understand that the hosts and
actors of this memetic competition are men as well as machines, or
even more so. We may then notice that systems are never born big,
and that the only big systems that work are those that were born
small and evolved and grew in a way that they were kept working
at every step [2]. We relate the spread of ideas to the demographics
generations of humans and machines passing on their forking and
mingling traditions—relating memetics to genetics. We understand



that pieces of hardware, software and wetware survive as part
of ecosystems, with cycles of development and use by various
humans, where economic and legal aspects have their importance
as well as technical and managerial aspects. We realize that these
systems compete on a market ultimately driven by economic costs,
of which technical aspects are but one part, often not the most
decisive one, though they are what the technicians obsess about.

Models such as above mostly serve to filter out doomed busi-
ness models and self-defeating attitudes when the model can ex-
plain how they go against reality. But they also lead to a few posi-
tive tools that actually help. A Third Wave of Cybernetics attempts
to re-create artificial life and life-like phenomena through the emer-
gence of behavior from many software agents. Unsupervised learn-
ing and tournament competitions yield results unreachable by su-
pervised learning and explicit fitness functions. Understanding that
the forces opposing creation act not through supernatural means but
through the action of malicious or misguided humans, we achieve
security through a mix of computer cryptography, growing net-
works of human trust, retaliating against bad behavior, and edu-
cating new people.

Software Darwinism provides a big picture that puts haughty
programmers down from their godly pedestal and back into the
muddy real world. It doesn’t offer direct solutions to design prob-
lems so much as it dispels our illusions about fake solutions and
unearned authorities. No one is a god, above the others, to predict
what will work and dictate what to do; our experts’ dreams are often
but vain obsessions, whereas some rare amateurs’ successful exper-
iment may start a revolution. Life is the ultimate judge—accept no
substitute, and respect its sanction.

3.5 Evolution is an Inside Job

Natural Selection may appear to look down on the world as a soul-
less marketplace. But it will only appear soulless if you imagine
yourself in the seat of that laissez-faire God above the world. Face
it: you’re no god, you’re not outside the world and above it. There
might be a God (or Gods), who might or might not be intervening in
this world—but you have to come to the realization that you are def-
initely neither Him nor any of Them. You’re one of us earthworms,
trying to make the best out of what you have (or not trying, and
thus probably failing and promptly disappearing into irrelevance).
Evolution is not something for you to enjoy watching from above,
it is something you are part of, willy nilly. You can’t just let nature
decide, you’re part of the nature that will decide. Whichever genes
and memes you carry may or may not survive—it is largely up to
your actions whether they will succeed or fail. You're either in the
experimental set of changes that may or may not work out well, or
you’re in the control set of the obsolete that will surely be replaced.
Such is the view from Inside Evolution.

The tools that matter are those that are available to you. Your
resources are limited, and you should invest them wisely. Which
tools will make you most productive personally? Opportunities are
there to be seized; if not by you now, by someone else later. On the
other hand, it may be too soon to invest in some ideas, and too late
to invest in others; timing is key. Specialization will help, and can
be a long-term investment that provides compound interests. As for
cooperation with other non-gods, you can only go so far with your
own efforts, and success lies in being able to leverage the efforts of
other people. Which tools allow you to reuse as much as possible of
these people’s efforts? Tools can be technical, or can be social. Not
just software libraries, but software communities, software market
niches, software business contracts. Of course, you always need
some kind of exclusive resource to ensure a revenue stream; your
combined proficiency, trustworthiness and time are ultimately the
only such resource you have, and ample enough to live well if you
can market it, though it will probably not make you super rich. On

the devil side, intellectual frauds will try to have you adopt their
bad ideas, and other scammers will try to divert your resources in
their favor; you must learn to avoid them.

Evolution as an Inside Job restores the soul in the marketplace
for software: yours. You’re the entrepreneur of your own life.

3.6 Social Evolution

As you fully grasp the fact that all actors are individuals, not
just yourself, you start taking into account incentive structures.
Incentive structures will put you and your associates in a position
to productively cooperate at your full potential, or to work at only
a fraction of it; so carefully watch both your legal and business
arrangements.

With a systematic view of incentives, you stress the importance
of contracts and accountability as a way to structure human inter-
action, re-uniting liberty of means and responsibility for results in
complex software arrangements. For instance service-level agree-
ments will allow to robustly build larger, more complex structures
than direct command chains. You may recognize the value of free
markets as a way to organize people and to evaluate ideas, reward-
ing those able to invest their resources in the good ones rather than
the bad ones. You may celebrate startup companies as light innova-
tion structures with highly motivated personnel.

You may also consider long-term effects of licensing issues on
development ecosystems. For instance, proprietary software has a
definite short-term advantage over free software in capitalization,
focus, coherence — and in the ability to use the latter when the lat-
ter can’t use the former. But in the long run, proprietary software
destroys incentive from anyone who doesn’t fully trust the software
owner; and that trust can last but until the eventual catastrophe in-
evitable in any centralized management. All proprietary software
has a suspended death sentence. Only free software can be immor-
tal and has a chance at maintaining long-term ecosystems that keep
evolving long after any particular strain of momentarily superior
proprietary software has come and gone.

Thinking in terms of social evolution, of arms races from pos-
itive feedback, equilibria from negative feedback, invariants from
limited resources, variants from energy sources and entropy sinks,
can make you see what is invisible to those ignorant of the perspec-
tive.

4. Stories Programmers Tell
4.1 Stories Evolve!

From naive Instant Creationism to the darwinist view from Inside
Evolution, we can observe a story arc in these logogonies them-
selves: Man is taken down from his pedestal as an Uber-God above
the machine, until he becomes an underdog competing as part of
processes that vastly surpass him, at the same level as machines.
Yet, each time Man’s image is humbled, Man himself is elevated,
as tools are then invented to address his identified weaknesses —
until he is one with the machines that augment him ever closer to
godhood.

The evolution of these stories can indeed be seen as an elabo-
ration, whereby each step replaces an overly simplistic story that
assumes power with a more accurate one that creates power. This
teleological evolution towards more darwinistic stories being more
accurate and more empowering could be a divine truth about our
universe; or it could be merely a claim by the author of this essay,
the validity of which could be less than universal; yet, even with-
out being universal, its relevance to your own life could make it
adaptive for you (for “us”?) to take it seriously.

In any case, we just stepped back from what the stories say to
talking about the stories themselves. We went meta on the stories.
Whereupon the topic of our story is storytelling.



4.2 Stories Matter

Now, the tools previously described already exist; they have been
created, engineered or selected, or they have emerged, without
any of these logogonies being explicitly stated, much less used as
conscious guides. Do these stories have any relevance, or are they
but nice-sounding post-hoc rationalizations? Even if relevant, don’t
they come too late to help invent those tools?

Daniel Dennett wrote: “There is no such thing as philosophy-
free science; there is only science whose philosophical baggage is
taken on board without examination.” In software programming as
in any other human endeavor, not stating your assumptions won’t
save you from the consequences of following them when they are
erroneous—not anymore than putting your head in the sand will
save you from predators you can’t see. The overarching stories you
follow—or paradigms, as they are commonly called— embody the
assumptions you implicitly make, often without a conscious deci-
sion; they determine the horizon of phenomena you can compre-
hend. What exists beyond these stories, you cannot see. And each
step in the evolution of these stories adds relevant phenomena to
which you were previously blind, of which you were a helpless
victim, that you can now see and master.

Diagnosing how a “series of unfortunate events” is no accident
but the necessary consequence of some previously invisible phe-
nomenon is a necessary first step to properly addressing an issue.
“Failing to plan is planning to fail.” If you assume an inadequately
simplistic paradigm, you will keep attacking your problem with in-
adequate tools because you cannot even see how better tools apply
to your case. You will waste significant human resources at unre-
warding repetitive tasks at which humans are unreliable compared
to the cheaper machines that you could have used; despite these
sacrifices, or rather because of them, you will keep failing, until
competition people using better paradigms drives you out.

4.3 Stories as Tools

The stories we live by are seldom told in so many words—precisely
because uttering them would make the “plot holes” in the stories
uncomfortably obvious: in addition to the pain of living a bad story
then comes the shame of being the story’s sucker. So these stories
remain implicit, official lies that go unsaid but are well internalized
as the logical justification for the processes followed and the tools
used. They are Games People Play [1].

However, once you realize the stories are themselves subject
to change, then making them explicit, uncovering their plot holes
and feeling their discomfort can become the means, opportunity
and motivation for quitting (or wholly avoiding) a bad game and
finding a better one. Going meta about stories is then a tool for
the group therapy of dysfunctional software development teams,
of dysfunctional software ecosystems—as well as for other dys-
functional human behaviors. Leaving stories implicit imprisons us;
making stories explicit liberates us.

4.4 The Proper Role of Stories

A story may good by itself—if it brings original insight; it may
be bad by itself—if it is logically inconsistent; but most stories
are only good or bad in context—as useful or misleading ways to
describe a situation.

If your problem is so simple that you grok it all and can write
down a software solution in one breath, by all means, do it! Don’t
follow a 12-step plan to software development to be rinsed and lath-
ered along 30 iterations. If on the other hand you can’t fully under-
stand the problem you’re tackling, if designing a solution is too
hard for structured methods, then keep escalating the methods you
use until you hopefully solve your problem. Generating random
programs until a solution is found should be a last resort. Yet given
proper biases in generation, cleverness in detection, and raw power,

this resort might be made affordable, and find solutions where other
methods fail.

Thus, when more elaborate stories are invented, older, simpler
stories don’t die out: they each find their niche of validity, where
the cost of improving on them is higher that the return on the im-
provement; meanwhile, new stories cover new ground more so than
claim known territory. Interestingly, as stories inspire tools that in-
crease man’s reach, the domain of validity of older stories is ex-
panded rather than narrowed. Modern languages and IDEs indeed
make it possible to instantly create or systematically engineer pro-
grams that would previously have been monumental endeavors—if
they could have been imagined at all.

The question therefore isn’t to find a one-size-fits-all story, but
to identify the story that best fits the situation at hand, which will
make you most effective if you play the games it suggests.

4.5 Leveraging Stories

Programmers could automate away a lot of the issues they face to-
day if only they graduated from the paradigm of (Un)Intelligent
Design to that of Supernatural Selection or better: Just giving up
on having humans write software directly, and instead adopting
more declarative and generative programming approaches could
deal with better results and fewer efforts with (de)serialization, per-
sistence, schemas and schema upgrades, replication, performance
autotuning, representation selection, or maintenance coherence be-
tween multiple data representations, code layers, specifications,
documentation and test files, etc. What more if they adopted the
Inside View of Evolution, they would have a healthier approach to
negotiating what the software should or shouldn’t be doing in the
first place.

As the profession matures, software libraries and programming
practices will spread that can be anticipated in terms of examining
which logogony underlies some unsatisfactory practice, and imag-
ining how a more elaborate logogony could enhance it.

For instance, unintelligent design brings us manual tests; lamar-
ckism makes testing incremental; supernatural selection inspires
generator-driven property checks; teleological evolution suggests
whitebox fuzz testing; natural selection suggests bug bounties; and
the inside view suggests paying attention to how management cre-
ates incentives towards better or worse code.

Intelligent design suggests type declarations; unintelligent de-
sign, type-checkers; lamarkism, type-based refactoring and schema
versioning; supernatural selection, generic types and type infer-
ence; teleological evolution, automated learning of probabilistic
type schemas for data extraction or activity monitoring; natural se-
lection, learning with competing models and automated translation
between type hierarchies; inside evolution, taking human factors,
responsibilities and incentives into account in the modular design
of class hierarchies and type systems.

The explicit application of logogonies to any particular topic
immediately suggests a fertile research program to analyze existing
practices and create new ones based on more elaborate logogonies.

4.6 Beyond These Logogonies

Your software activities are unlikely to follow the "perfect”" lo-
gogony; but that doesn’t mean that the story bringing the most
tragic dysfunction in your life is your logogony. There are many
stories about Software and about Man, that define your current be-
havior, the roles you play. If you work in a team (and you do), sto-
ries also define the way this team is organized, sets its goals and its
means, the way each of its members sets their goals and means, the
way people interact with each others inside and outside the team,
etc. And the one story that you get most wrong, that is causing you
the greatest pain or waste in your life, that you could benefit most
from fixing... is for you to discover, examine, and replace. Logogo-



nies were just the most spectacular way of illustrating the notion
of stories and games we play; they are by no means the only inter-
esting stories, or the stories most relevant to whichever important
issue you’re dealing with at the moment. So, make the stories of
your life explicit, identify those you’re living, and rewrite them,
better!

One the other hand, if progress in how software is developped
can be related to stories about software development, a ques-
tion naturally arises: what are the next logogonies? Is the above
“view from Inside Evolution” the be-all, end-all of programming
paradigms? Is there nothing left but incremental refinement of
existing concepts and tools? Or are there paradigms as radically
advanced compared to software darwinism as software darwin-
ism is compared its predecessors? Can one identify and adopt this
paradigm early on, and thus get an edge over competition?

5. Stories Future
5.1 Present Optimism

The simplest view about logogonies is that there will be no new
ones, at least none that works. Our understanding of software de-
velopment is mature; though there may be myriads of minor details
to get right, the big picture is complete. This is Present Optimism:
the “end of history” was reached, from there it’s smooth sailing
and/or decline.

Of course, assuming the big picture about software will ever
contain but finite understandable information, there will be a point
when there is no room left for further paradigm improvements.
Therefore Present Optimism will some day be true, about logogo-
nies as about many things.

On the other hand, considering how new the field of software
development is and how fast it has changed in just the last few
years, it seems premature to declare that we fully understand how
software is developed and will never find new deep insights. If our
understanding of software development were to remain stagnant
for, say, five to ten years, and all developers were to settle towards
a finite set of well understood unchanging methods, then we could
assert with much more confidence that indeed we have reached the
acme of software development. But this hasn’t nearly happened yet,
and the case for Present Optimism is rather slim.

5.2 The Singularity

A different kind of optimism, and a common idea regarding future
logogonies has always been that computers will somehow surpass
men in intelligence and take over the menial task of programming:
they will be genies, who will grant your every software wishes, the
details of which they can anticipate better than you can specify.
This is Extreme Future Optimism, or Singulatarianism: the theory
that soon(er or later), we’ll reach a Technological Millenium, or
Singularity, when all our worries are taken away.

However, this Millenarianism is based on a misunderstanding,
that is best dispelled by contrasting its equal and opposite misun-
derstanding: Millenarian Luddism, the claim that technology unless
stopped will bring a bleak future where humans are reduced to mis-
ery as machines take all their jobs away. Hopefully the errors will
cancel each other in a collision from which light will emerge.

5.3 No Escape from Evolution

Computers have replaced humans in many ways, and will keep
replacing them in more ways. Computerized tools that replace
humans while programming are the heart of our story so far. But
automation does not destroy human jobs, it only displaces jobs
towards new areas not covered by tools. Successful tools provide
more satisfactions than before while reducing efforts. More for
less—progress .| The human resources previously expended toward

those satisfactions are not destroyed but liberated; they are made
available, to be redirected to new useful endeavours that couldn’t
previously be afforded, together with the increased riches with
which to pay them. Furthermore, the law of comparative advantage
ensures that even at absolute disadvantage, the tasks relatively
better done by meatware than by software will remain a domain
of human activity.

Of course, nobody prevents from using or sponsoring a human-
intensive way of programming that declares some forms of ma-
chine assitance taboo. There will always be a cottage industry of
“brain made” software just like there now is a cottage industry of
“hand made” pottery (still using tools, just neolithic ones). But just
like automation in other industries increased productivity and made
mankind vastly wealthier, so will automation in programming in-
crease productivity and serve mankind—it already does through all
the software development tools previously mentioned. And with
further progress, programming in today’s hip tools will become as
obsolete as programming in COBOL or Assembly has become: a
waste effort, and guaranteed ultimate failure, for the Luddites who
refuse automation.

The laws of Economics still apply. Which includes the laws
of Evolution. Indeed, the ideas behind Evolution were discovered
by historians as applied to economics, long before they were ever
applied to biology—or software.

5.4 Sentient Agency

Machines can turn feats into chores, chores into menial tasks, me-
nial tasks into assumable commodities. But they can neither create
nor destroy the desire for ever more, ever greater satisfactions, the
ability to adapt and work towards these satisfaction, and the indi-
vidual accountability for the results: in other words, human drive,
spirit and agency. As our past worries are cared for, we focus on
loftier worries. Ultimately, only human parents create human jobs,
and only illness and death destroy them; the rest is a matter of orga-
nizing existing human resources. The fear of Artificial Intelligence
and claim of Human Supremacy is a lifeformist stance wrapped in
the usual protectionist fallacies, and its narrowmindedness should
inspire the same spite as racist or nationalist arguments before it.

Conversely, blind faith in Artificial Intelligence is but another
millenarian superstition—people dreaming of being saved from
having to live their own lives. This blind faith is a cop out, in that
it wishes away the very nature of life and its intrinsic challenges.
Even if “intelligent” machines were to replace humans in the activ-
ity of programming, said machines won’t be able cop out of having
alogogony: software issues will have to be addressed, the buck will
have to stop at someone. And that someone is necessarily a sentient
agents, whether electronical or biological, equally constrained by
the laws of |““Human” Action, i.e. purposeful action: the competi-
tion for scarcity of resources, the power of incentives, the benefits
of cooperation, the law of supply and demand, the importance of
property rights, etc., and ultimately, evolution, will apply to them
as to they apply to us.

However brighter or gloomier than today a future with artificial
intelligences will be, bridging the gap between today and that fu-
ture, if possible, won’t be achieved by hand-waving. It will require
a paradigm shift that the cop out precisely aims at blanking out.

The legitimate cop out is not to assume knowledge but to admit
ignorance: “my previous investigations didn’t lead to any firm
conclusion to this question, and I don’t have enough combined
care for the matter and trust in the remaining venues available for
investigation to afford further investigation.”


http://www.econlib.org/library/Bastiat/basHar11.html
http://www.econlib.org/library/Bastiat/basHar11.html
http://www.econlib.org/library/Topics/Details/comparativeadvantage.html
https://mises.org/library/human-action-purposeful-action

6. Open Conclusion
6.1 Educated Guesses

The future promises many revolutions in how software will be
written: between “artificial intelligence” and cyber-security arms
race, mind-defying heuristics and automated formal methods, to-
morrow’s technology is likely to obsolete today’s programming
practices as hopelessly primitive and insecure. Can we make more
precise predictions? It is difficult to make predictions, especially
about the future (Karl Kristian Steincke). If you could provide an
accurate functional description of what the future would bring, then
this future would already be there, by the simple execution of this
description as a plan. But we can make educated guesses. Here are
mine...

6.2 Bootstrapping Intelligence

Activities involving human intelligence have already started being
replaced by computer automation. All of the programming tools
we mentionned above are indeed forms of this replacement. The
purpose of computers is to automate that which can be automated.
This applies to all human activities, including “intellectual” activi-
ties. In particular this applies to software development itself.

One may hope that applying intelligence automation techniques
at improving themselves may be self-catalytic: cumulative progress
in machine intelligence leads to ever more progress in machine
intelligence; bias towards systems that mutate better and faster
leads to systems with even stronger bias toward mutating better
and faster; pressure for higher value and lower costs leads to more
valuable, cheaper automation that itself increases this pressure.
Intelligence at writing machine learning software may be the most
general kind of intelligence computers may have; and series of
meta-level mutations can quickly bootstrap such intelligence in a
positive feedback loop, until a phase transition is reached.

It is not immediately relevant whether a “Singularity” is ever
reached whereby mankind is transcended, or whether mankind
is as elaborate as intelligence gets, whether artificially intelligent
autonomous agents ever emerge, or the only agents ever are humans
and machines remain their props. That is not for any of us to
decide, only to observe; maybe partake. Now, any progress we
make is quantum, made of irreducible bits of information that take
us closer to this goal, whether by big strides or tiny steps; and the
amount of progress to reach whatever “intelligence” machines can
embody is finite; therefore, if humans keep at it, they’ll reach their
destination eventually, whether in decades, centuries, millenia or
stranger aeons. What matters is that some road will be taken, and
that those who stay behind will become irrelevant; what matters
is that inasmuch as there is an inflexion point where we’ll reach
quickly diminishing returns on investment in machine intelligence,
this point seems to be well ahead of us; what matters is that we are
within the part of the curve that accelerates.

Now is a time that you, personally, can have an impact. To
maximize it, you may ask questions such as: What tools can you
develop today that will best increase automation intelligence in the
long run? Which generally applicable software methods are not
currently applied to improving software development itself? What
kind of architecture makes it easier to combine such methods and
apply them to the improvement of software development itself?
What essential aspects of more intelligent software are currently
left unresearched?

6.3 As we grope for the future...

All of us each have to make choices. I can see many opportu-
nities: in architecting software that combines induction (machine
learning) and deduction (algorithms); in recognizing that interac-
tion with computers is dialogue not command, between unequals

that have specific comparative advantages; in understanding of how
the social organization of programmers and the architectural or-
ganization of programs are related via the feedback and incentive
structures they induce.

But in the end, with this and other articles, my choice will have
been to try to reach out a happy few programmers to open their
minds to improving how they may think about programming, and
becoming assumed entrepreneurs of their own software life; that
they may control the internal evolution of their identity to adapt
to the world, rather than be the unconscious victims of an external
evolution they can’t fathom — and creating software ecosystems
that reflect this ability to improve oneself from within.

Bibliography
[1] Eric Berne. Games People Play: The Psychology of Human
Relationships. 1964.

[2] John Gall. Systemantics: How Systems Work and Especially
How They Fail. 1975.



	1 Introduction and Disclaimer
	1.1 Logogonies and Anthropodicies
	1.2 Claims and Non-Claims
	1.3 From Über-God to Underdog, and Beyond

	2 Software Creationism
	2.1 The Simplest Logogony
	2.2 The Simplest Anthropodicy
	2.3 The Birth of Tools
	2.4 Layered Creation
	2.5 Iterated Creation
	2.6 Intelligent Design
	2.7 Polytheism
	2.8 Limits to Intelligence
	2.9 Unintelligent Design
	2.10 Progress through Humility
	2.11 Lamarckism

	3 Software Evolutionism
	3.1 Supernatural Selection
	3.2 Teleological Evolution
	3.3 Natural Selection
	3.4 Software Darwinism
	3.5 Evolution is an Inside Job
	3.6 Social Evolution

	4 Stories Programmers Tell
	4.1 Stories Evolve!
	4.2 Stories Matter
	4.3 Stories as Tools
	4.4 The Proper Role of Stories
	4.5 Leveraging Stories
	4.6 Beyond These Logogonies

	5 Stories Future
	5.1 Present Optimism
	5.2 The Singularity
	5.3 No Escape from Evolution
	5.4 Sentient Agency

	6 Open Conclusion
	6.1 Educated Guesses
	6.2 Bootstrapping Intelligence
	6.3 As we grope for the future...

	Bibliography

