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Motivation

I Elementary Basic: Learning to Program your Computer in
Basic with Sherlock Holmes is an introductory book on
programming from 1982 with an interesting central conceit . . .

I I have seen several introductory programming books and
articles from the 1980s, but none like this.

I Looking beyond the presentation, the technical content and
its structure is atypical too.

I What can we learn from an unusual source like this?

I How does it compare with modern books or with other books
of its time?



Central Conceit

I Sherlock Holmes used Charles Babbage’s Analytical Engine to
assist in solving various mysteries.

I The authors have supposedly discovered unpublished
manuscripts detailing Watson’s discussions with Holmes on
these ventures into programming.

I The manuscripts have been translated into BASIC for the
benefit of the modern reader.
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Historical Context

I By the early 1980s, commercially produced home computers
were available to the public at reasonable prices:

I 1977 Trinity — Apple II, Commodore PET, TRS-80
I 1982 — Commodore 64, ZX Spectrum, BBC Micro

I These computers came with BASIC built in.

I The BASIC interpreter typically doubled as the operating
system.

I Books and articles in magazines on how to program were
widespread.

I Authors of Elementary Basic questioned whether the world
really needed yet another text on programming.



Structure of the Book

I Structure of the book: sequence of increasingly complex
programs.

I Not organised around introduction of standard language
features!

I Structure of a typical chapter:
I After some setup, Holmes discusses with Watson an aspect of

a mystery that could be solved easily using a computer.
I Holmes presents pseudo-code for solving the problem, followed

by a BASIC implementation.
I Watson asks questions about new ideas or confusing parts of

the program, which Holmes answers.
I The chapter concludes with an “out of character” summary of

any new language features introduced.



About the Authors

Who wrote this book?
I Henry Ledgard

I PhD in CS from MIT; postdoc at Oxford
I Part of the ADA design team

I Andrew Singer
I PhD in CS from Massachusetts
I Was an editor of short-lived ROM magazine

I Non-credited authors played substantial roles in book’s
development . . .

I . . . in particular in writing the pastiches of Sherlock Holmes
stories.

Lesson: If you want to write an interesting book for a general
audience, you might need someone skilled primarily as a writer.



Motivation of the Authors

The authors claimed that:

I programming is difficult. . . [but] the basis of programming
stems from a few elementary ideas;

I the dialogue format of the book is an easy to follow and
enjoyable exposition of those ideas;

I and the best method to teach programming is through
problems.



Concept and Format

The key idea behind the book is certainly novel . . .

I . . . and it makes people want to read it.

The dialogue format is also unusual.

I The idea of using a dialogue to expose ideas is very old.

I It allows possible points of contention or causes of confusion
to be explored in a natural way.

I Why is it not used more often? (Not just in books.)



Problems to Motivate Programming

Problems that can be solved using a computer are presented and
solved.

I Can be more engaging than typical “how to add a list of
numbers” example programs.

I Would it have been more engaging to its audience than
writing a text adventure or Space Invaders clone?

I Not necessarily the case that new programs introduce new
language features; it might just be increased complexity.

I Distinct approach from most introductory programming texts
then and now.

Note this is not problem-based learning:

I Little attempt to engage reader in exploratory thinking and
problem solving.

I No suggested exercises for the reader to try.



Problems to Motivate Programming

Here are some of the programs from the book:

I Solving a murder from clues.

I Calculating number of tide cycles between dates and times.

I Turning Julian days into date and month.

I Calculating molecular weight of a compound from its formula.

I Formatting and displaying a coroner’s report.

I Searching a flat file database for a matching criminal record.

Although the setting is interesting, many of the programs end up
being rather pedestrian.



Focus on Program Development

Types:

I Types as enforced by the language.

I Types as intended by the programmer.

Top-down design:

I In vogue at the time.

I Emphasised throughout the book.

I Rare to discuss design methods much at all in other
introductory books of the time.

Code hygiene:

I Use descriptive variable names.

I Add comments.

I Use indentation meaningfully.



How BASIC Hinders the Book
BASIC was the most popular language of its day with good reason:

I Relatively easy to implement an interpreter in a computer
with little memory and processing power.

I English-like keywords make it less frightening to beginners.

I Lack of enforced structure means you can start programming
immediately.

Today, it is popular to criticise BASIC. That is not my intention.
Nonetheless:

I Some aspects of BASIC make it difficult to write complex
programs.

I This shows the choice of language is significant in introducing
programming.

I There was also a version of this book in Pascal.
I Was it any good?
I Did anyone read it?



Focus on Program Development (revisited)
Types:

I Types as enforced by the language. Very few language types.

I Types as intended by the programmer.

Top-down design:

I In vogue at the time.

I Emphasised throughout the book.

I Rare to discuss design methods much at all in other
introductory books of the time.

I Difficult to add lines in middle of program — difficult to
refine.

Code hygiene:

I Use descriptive variable names. Some BASICs only support
short names.

I Add comments. Uses up valuable memory.

I Use indentation meaningfully. Discarded by many
implementations.



How BASIC Hinders the Book (continued)

One of the most popular criticisms of BASIC is its emphasis on
GOTO. But:

I Sometimes useful if you don’t have the high-level control
structure you want.

I You can still do structured programming — as this book
shows.

I Many implementations supported for/while loops.

I Being able to jump is a necessary concession to difficulty of
inserting lines.

In my opinion, limited or no support for compound datatypes or
dynamic allocation of data structures is a far bigger disadvantage.



Solving a Murder: The Problem



Solving a Murder: Top-Down Design



Solving a Murder: Classifying the Clues



Solving a Murder: “Algorithm”



Solving a Murder: “Algorithm”



Solving a Murder: Code
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Solving a Murder: Code



Solving a Murder: Code



Conclusions

How is programming to be taught?

I Programming books should be written in collaboration with
writers.

I Dialogues are an appealing method of development and
exposition of ideas.

I Programming through problem-solving can be more engaging.

I Choice of programming language does matter.

I There ought to be a clearer distinction between teaching a
language and teaching programming.



Conclusions

Are we getting better at writing programs that solve the given
problem?

I The complexity of problems in introductory texts today would
suggest so.

Is programming a specialist discipline, or will everyone in the future
be a programmer?

I I claim the reverse: much of what would be done with
“programming” in the past would be done with a spreadsheet
or database today.



Thanks for listening. Comments and questions?
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