
What can a 1980s
BASIC programming
textbook teach us

today?

Martin Lester

Department of Computer Science,
University of Oxford

History and Philosophy of
Programming,
2018–03–23



Motivation

I Elementary Basic: Learning to Program your Computer in
Basic with Sherlock Holmes is an introductory book on
programming from 1982 with an interesting central conceit . . .

I I have seen several introductory programming books and
articles from the 1980s, but none like this.

I Looking beyond the presentation, the technical content and
its structure is atypical too.

I What can we learn from an unusual source like this?

I How does it compare with modern books or with other books
of its time?



Central Conceit

I Sherlock Holmes used Charles Babbage’s Analytical Engine to
assist in solving various mysteries.

I The authors have supposedly discovered unpublished
manuscripts detailing Watson’s discussions with Holmes on
these ventures into programming.

I The manuscripts have been translated into BASIC for the
benefit of the modern reader.



Outline

Introduction

Outline

Context
Historical Context
Structure of the Book
About the Authors

How is the Book Typical/Atypical?
Concept and Format
Problems to Motivate Programming
Focus on Program Development
Example: Solving a Murder

Conclusions



Historical Context

I By the early 1980s, commercially produced home computers
were available to the public at reasonable prices:

I 1977 Trinity — Apple II, Commodore PET, TRS-80
I 1982 — Commodore 64, ZX Spectrum, BBC Micro

I These computers came with BASIC built in.

I The BASIC interpreter typically doubled as the operating
system.

I Books and articles in magazines on how to program were
widespread.

I Authors of Elementary Basic questioned whether the world
really needed yet another text on programming.



Structure of the Book

I Structure of the book: sequence of increasingly complex
programs.

I Not organised around introduction of standard language
features!

I Structure of a typical chapter:
I After some setup, Holmes discusses with Watson an aspect of

a mystery that could be solved easily using a computer.
I Holmes presents pseudo-code for solving the problem, followed

by a BASIC implementation.
I Watson asks questions about new ideas or confusing parts of

the program, which Holmes answers.
I The chapter concludes with an “out of character” summary of

any new language features introduced.



About the Authors

Who wrote this book?
I Henry Ledgard

I PhD in CS from MIT; postdoc at Oxford
I Part of the ADA design team

I Andrew Singer
I PhD in CS from Massachusetts
I Was an editor of short-lived ROM magazine

I Non-credited authors played substantial roles in book’s
development . . .

I . . . in particular in writing the pastiches of Sherlock Holmes
stories.

Lesson: If you want to write an interesting book for a general
audience, you might need someone skilled primarily as a writer.



Motivation of the Authors

The authors claimed that:

I programming is difficult. . . [but] the basis of programming
stems from a few elementary ideas;

I the dialogue format of the book is an easy to follow and
enjoyable exposition of those ideas;

I and the best method to teach programming is through
problems.



Concept and Format

The key idea behind the book is certainly novel . . .

I . . . and it makes people want to read it.

The dialogue format is also unusual.

I The idea of using a dialogue to expose ideas is very old.

I It allows possible points of contention or causes of confusion
to be explored in a natural way.

I Why is it not used more often? (Not just in books.)



Problems to Motivate Programming

Problems that can be solved using a computer are presented and
solved.

I Can be more engaging than typical “how to add a list of
numbers” example programs.

I Would it have been more engaging to its audience than
writing a text adventure or Space Invaders clone?

I Not necessarily the case that new programs introduce new
language features; it might just be increased complexity.

I Distinct approach from most introductory programming texts
then and now.

Note this is not problem-based learning:

I Little attempt to engage reader in exploratory thinking and
problem solving.

I No suggested exercises for the reader to try.



Problems to Motivate Programming

Here are some of the programs from the book:

I Solving a murder from clues.

I Calculating number of tide cycles between dates and times.

I Turning Julian days into date and month.

I Calculating molecular weight of a compound from its formula.

I Formatting and displaying a coroner’s report.

I Searching a flat file database for a matching criminal record.

Although the setting is interesting, many of the programs end up
being rather pedestrian.



Focus on Program Development

Types:

I Types as enforced by the language.

I Types as intended by the programmer.

Top-down design:

I In vogue at the time.

I Emphasised throughout the book.

I Rare to discuss design methods much at all in other
introductory books of the time.

Code hygiene:

I Use descriptive variable names.

I Add comments.

I Use indentation meaningfully.



How BASIC Hinders the Book
BASIC was the most popular language of its day with good reason:

I Relatively easy to implement an interpreter in a computer
with little memory and processing power.

I English-like keywords make it less frightening to beginners.

I Lack of enforced structure means you can start programming
immediately.

Today, it is popular to criticise BASIC. That is not my intention.
Nonetheless:

I Some aspects of BASIC make it difficult to write complex
programs.

I This shows the choice of language is significant in introducing
programming.

I There was also a version of this book in Pascal.
I Was it any good?
I Did anyone read it?



Focus on Program Development (revisited)
Types:

I Types as enforced by the language. Very few language types.

I Types as intended by the programmer.

Top-down design:

I In vogue at the time.

I Emphasised throughout the book.

I Rare to discuss design methods much at all in other
introductory books of the time.

I Difficult to add lines in middle of program — difficult to
refine.

Code hygiene:

I Use descriptive variable names. Some BASICs only support
short names.

I Add comments. Uses up valuable memory.

I Use indentation meaningfully. Discarded by many
implementations.



How BASIC Hinders the Book (continued)

One of the most popular criticisms of BASIC is its emphasis on
GOTO. But:

I Sometimes useful if you don’t have the high-level control
structure you want.

I You can still do structured programming — as this book
shows.

I Many implementations supported for/while loops.

I Being able to jump is a necessary concession to difficulty of
inserting lines.

In my opinion, limited or no support for compound datatypes or
dynamic allocation of data structures is a far bigger disadvantage.



Solving a Murder: The Problem



Solving a Murder: Top-Down Design



Solving a Murder: Classifying the Clues



Solving a Murder: “Algorithm”



Solving a Murder: “Algorithm”



Solving a Murder: Code



Solving a Murder: Code



Solving a Murder: Code



Solving a Murder: Code



Conclusions

How is programming to be taught?

I Programming books should be written in collaboration with
writers.

I Dialogues are an appealing method of development and
exposition of ideas.

I Programming through problem-solving can be more engaging.

I Choice of programming language does matter.

I There ought to be a clearer distinction between teaching a
language and teaching programming.



Conclusions

Are we getting better at writing programs that solve the given
problem?

I The complexity of problems in introductory texts today would
suggest so.

Is programming a specialist discipline, or will everyone in the future
be a programmer?

I I claim the reverse: much of what would be done with
“programming” in the past would be done with a spreadsheet
or database today.



Thanks for listening. Comments and questions?



Thanks for listening. Comments and questions?


	Introduction
	Outline
	Context
	Historical Context
	Structure of the Book
	About the Authors

	How is the Book Typical/Atypical?
	Concept and Format
	Problems to Motivate Programming
	Focus on Program Development
	Example: Solving a Murder

	Conclusions

