
The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

The Affordances of Phenomenology for
Programming

Robin K. Hill

University of Wyoming, Philosophy Department

23 March 2018
Fourth Conference on the History and Philosophy of

Programming

1 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Outline
1 Programs and Us

2 Introduction to Phenomenology

3 Phenomena of Programs as Problem Solutions

4 Phenomena of Problem Solutions as Programs

5 Unbegging the Question

6 Phenomena of Program Coding

7 Phenomena of Program Execution

8 Phenomena of Programs as Innate Skill

9 Conclusion

2 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

People Sorting Records

Picture someone who spills a stack of dated cards on the floor,
and then starts to pick them up in chronological order. He
grabs older cards first, arranges those correctly relative to each
other, and then searches through the pile for the more recent
cards, pausing to sort clusters separately...

A computer scientist might observe different sorting algorithms
(Insertion Sort, Selection Sort, Mergesort) in execution.

3 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

People Passing the Buck

Let’s say that a teenager asks his mother for permission to go a
party.

She could take an action:
Say “yes” or “no.”
Refer to the answer she gave
his sister.
Tell him to ask his father.

4 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

People Passing the Buck

Let’s say that a teenager asks his mother for permission to go a
party.

She could take an action: A computer scientist might
observe:

Say “yes” or “no.” Passing by value.
Refer to the answer she gave
his sister.

Passing by reference.

Tell him to ask his father. Passing by name.

5 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Computational Interpretations

In other words, we see people doing “the same kind of thing”
as programs.

To pursue this down the standard paths:

* Programming techniques are derived from human activity;
humans are executing inherent algorithms.

* Human activity mimics programming techniques; we have
learned (or, at least, identified) algorithms from what we
have noticed in programs.

But wait! What about the experiences themselves? Isn’t there
something else?

In what way can we respect that view of programs?

6 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Computational Blinders?

We are missing something. This is the current view.

The things we talk about in computing are subject
ONLY to interpretation and analysis in terms of
computation.

This is the broader view.

The things we talk about in computing are subject to
interpretation and analysis in terms of computation
AND in terms of first-person descriptions of
experiences.

7 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

An Early 20th-Century European
Movement

Edmund
Husserl

The turn of the 20th century
saw reaction against the prevailing positivism.
One was the phenomenology of Husserl
and others, in which he promoted first-person
descriptive analysis of things as they appear,
free of assumptions about an external world
that exists independently of our consciousness.

8 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Phenomenological Reduction

How? The phenomenological reduction gives guidance:

Epoché: Suspension of interpretation, explanation,
preconception in favor of experience; a halt to
taking the world for granted.

Reduction: Recognition of acceptedness as acceptedness
(rather than veracity); the insight required to
accomplish epoché.

9 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Terms of Process

Epoché is not a denial of belief (nor an affirmation), but
abstention, a reset that purges noumena and causal
explanations.

And transcendency (detachment from the world) is what allows
us to interrogate what sorts of things we are dealing with, and
what allows us to notice those things in the first place.

Husserl uses the term (translated as) “bracketing” to indicate
the setting aside of expectations and preconceptions.

10 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Programming Experiences

Such a reset in the philosophy of programming would afford
more diversity of perspective, more breadth in the study of
programming.

Programmers themselves see certain things going on as they
write code to solve problems. Those are first-person
experiences of consciousness.

Programmers turn out programs. Those are not first-person
experiences of consciousness.

11 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Caveats

This author must admit that:

1 She relies on Husserl’s interpreters more than on the
original text, which is difficult in translation (and
presumably also in the native German).

2 Phenomenology is quite out of fashion.

3 For Husserl, phenomenology is not a method but a
commitment. Although some commentators [1] refers to a
“set of processes and procedures,” others reject such a
procedural interpretation [2].

12 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Algorithms are Imperatives

Yet we promote the method, and even claim an instance of the
success of the phenomenology of programs:

1 Programs are constructs of algorithms

2 Computational models such as Turing Machines are
declarative; they are given by definitions.

3 Algorithms are not declarative, but imperative structures,
sequences of commands.

The rendering of the algorithm as an abstract imperative
structure demonstrates a phenomenological approach [4].

13 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Parameter Passing is Authority
Invocation

Consider the parameter-passing example. A value (a datum,
answer, or object) can be given (1) directly; (2) by location; or
(3) by deferral to another function... which requres division
into calling routine and subroutine.

No such division appears in the first-person experience of the
family permissions situation. What does appear is the placing
of responsibility, the choice of sources for formulation and
conveyance of a judgment.

Phenomenology gives us a new angle.

14 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Sorting is Mixed

Consider the sorting example. People follow the named
algorithms in fits and starts, switching among them easily as
dictated by the values ready to hand.

In the first-person experience, the next placement is driven by
either the need of the sorted set or the presentation of the
unsorted set, in a choreography of convenience.

15 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Tracking Replicas

Consider solutions to the problem of setting the dining table,
which often involves a set of replica household artifacts,
perhaps plates, or chairs, or dinner napkins.

Conceptualizations of dinner plates:

Class + Count: an exemplar and quantity, when there is no
reason to distinguish one from another.

Array of Individuals: when one takes on a distinct feature, for
example, needing repair.

The phenomenon is fluid, effortless, simultaneous
apprehension of two identification perspectives.

But the computation gives rigid and incompatible definitions,
any switching requiring total restructuring.

Programming does not capture the phenomenon.

16 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Tracking Replicas

Consider solutions to the problem of setting the dining table,
which often involves a set of replica household artifacts,
perhaps plates, or chairs, or dinner napkins.

Conceptualizations of dinner plates:

Class + Count: an exemplar and quantity, when there is no
reason to distinguish one from another.

Array of Individuals: when one takes on a distinct feature, for
example, needing repair.

The phenomenon is fluid, effortless, simultaneous
apprehension of two identification perspectives.

But the computation gives rigid and incompatible definitions,
any switching requiring total restructuring.

Programming does not capture the phenomenon.

16 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Tracking Replicas

Consider solutions to the problem of setting the dining table,
which often involves a set of replica household artifacts,
perhaps plates, or chairs, or dinner napkins.

Conceptualizations of dinner plates:

Class + Count: an exemplar and quantity, when there is no
reason to distinguish one from another.

Array of Individuals: when one takes on a distinct feature, for
example, needing repair.

The phenomenon is fluid, effortless, simultaneous
apprehension of two identification perspectives.

But the computation gives rigid and incompatible definitions,
any switching requiring total restructuring.

Programming does not capture the phenomenon.

16 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Exercising Epoché

More obvious examples of real-world phenomena subject to
implementation as programs that may be a bad fit:

Spreadsheets Bookkeeping with arithmetic? No—lists,
grouping, fixed-column display, that is,
formatting.

Social Media Free and open presentation under relevance
criteria? No—an anarchy of anonymous
publication with no accountability.

Computational blinders?

If so, the benefits of removal:

Spreadsheets Better business model, higher productivity.

Social Media Abandonment of attempts to fix with more
selection criteria.

17 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Exercising Epoché

More obvious examples of real-world phenomena subject to
implementation as programs that may be a bad fit:

Spreadsheets Bookkeeping with arithmetic? No—lists,
grouping, fixed-column display, that is,
formatting.

Social Media Free and open presentation under relevance
criteria? No—an anarchy of anonymous
publication with no accountability.

Computational blinders? If so, the benefits of removal:

Spreadsheets Better business model, higher productivity.

Social Media Abandonment of attempts to fix with more
selection criteria.

17 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Assuming Computation

Main Point: All of these phenomena deserve investigation
independent of their computational (digital, discrete, symbolic,
formal) manifestation in programs.

An analog of Husserl’s criticism emerges: The current
paradigm seeks enlightenment about computing through the
construction of theories that induce exclusively computational
results. It begs the question.

The use of formal methods to explore formal methods is, to use
Husserlian terms, an unrecognized captivation [8] (that is, a
restriction on imagination, hence, understanding).

18 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Affordances

An affordance is “a property of an object or an aspect of the
environment, especially relating to its potential utility, which
can be inferred from visual or other perceptual signals; (more
generally) a quality or utility which is readily apparent or
available.” [10].

We seek the affordances of programs via phenomenology,
bracketing computation, to gain a greater understanding of the
computer program.

19 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Discomfiture

What will make computer scientists uncomfortable:

• Untethering from the constraints of logic.

• Forgoing a human-independent system.

• Subjectivity rather than objectivity.

• Repudiation of the hegemony of the Turing Machine.

These are threats to rigor.

But formalists understand that
begging the question is the worst threat to rigor.

20 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Discomfiture

What will make computer scientists uncomfortable:

• Untethering from the constraints of logic.

• Forgoing a human-independent system.

• Subjectivity rather than objectivity.

• Repudiation of the hegemony of the Turing Machine.

These are threats to rigor. But formalists understand that
begging the question is the worst threat to rigor.

20 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Where Are the Applications?

You may be wondering...

Where are the exercises in phenomenology that Husserl seemed
to expect?

Husserl preaches phenomenology...

but doesn’t practice it.

Dreyfus [3] wants to weaponize it.

Beavers [1] wants to formalize it.

No one wants to do it.

In the literature, applications are scarce. (See Ihde [5], McPhail
[6]).

21 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Where Are the Applications?

You may be wondering...

Where are the exercises in phenomenology that Husserl seemed
to expect?

Husserl preaches phenomenology... but doesn’t practice it.

Dreyfus [3] wants to weaponize it.

Beavers [1] wants to formalize it.

No one wants to do it.

In the literature, applications are scarce. (See Ihde [5], McPhail
[6]).

21 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Where Are the Applications?

You may be wondering...

Where are the exercises in phenomenology that Husserl seemed
to expect?

Husserl preaches phenomenology... but doesn’t practice it.

Dreyfus [3] wants to weaponize it.

Beavers [1] wants to formalize it.

No one wants to do it.

In the literature, applications are scarce. (See Ihde [5], McPhail
[6]).

21 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Where Are the Applications?

You may be wondering...

Where are the exercises in phenomenology that Husserl seemed
to expect?

Husserl preaches phenomenology... but doesn’t practice it.

Dreyfus [3] wants to weaponize it.

Beavers [1] wants to formalize it.

No one wants to do it.

In the literature, applications are scarce. (See Ihde [5], McPhail
[6]).

21 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Where Are the Applications?

You may be wondering...

Where are the exercises in phenomenology that Husserl seemed
to expect?

Husserl preaches phenomenology... but doesn’t practice it.

Dreyfus [3] wants to weaponize it.

Beavers [1] wants to formalize it.

No one wants to do it.

In the literature, applications are scarce. (See Ihde [5], McPhail
[6]).

21 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Where Are the Applications?

You may be wondering...

Where are the exercises in phenomenology that Husserl seemed
to expect?

Husserl preaches phenomenology... but doesn’t practice it.

Dreyfus [3] wants to weaponize it.

Beavers [1] wants to formalize it.

No one wants to do it.

In the literature, applications are scarce. (See Ihde [5], McPhail
[6]).

21 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

What is Bracketed?

You may be wondering...

What does reduction bracket, in the case of programs; what are
the assumptions that mislead us without epoché?

1 That the objects of the universe are discrete, and typed.

2 That the action of the universe is partial-recursive.

3 That the interactions between objects and actions of the
universe are algorithmic.

All may be true! We just want to derive them rather than
assume them.

22 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

What is Bracketed?

You may be wondering...

What does reduction bracket, in the case of programs; what are
the assumptions that mislead us without epoché?

1 That the objects of the universe are discrete, and typed.

2 That the action of the universe is partial-recursive.

3 That the interactions between objects and actions of the
universe are algorithmic.

All may be true! We just want to derive them rather than
assume them.

22 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Programmers

Now, finally, let’s look at the first-person experiences of
composing and testing programs, that is, the cognitive
phenemenology, not the sensory [7]. (Is there any sensory
phenomenology of programming?)

Is the phenomenology of programming computational, that is,
does a programmer in action feel like a computer (mechanical)?

Not really.

23 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

The First-Programmer Experience

The first-person conscious experience of the design and coding
of programs, systems, circuits, or databases is:

the struggle to figure something out, to force well- or
ill-defined goals into mechanical procedures on
defined inputs

It leads to satisfaction, frustration, fulfillment, exhaustion,
accomplishment... but not to an electronic register state.

A programmer feels external to the program, and does not feel
like a computer. (The awareness of our own mental
computation is part of the experience, as recognized by
Aristotle and Husserl.)

24 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Computers

Can we look at it from the “first-machine” point of view?

That is, what is the experience of the computer?

Should such a phenomenology be available under
computationalism (the theory that the brain is a computer)?

25 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

The First-Computer Experience

We can’t investigate by analogy... we don’t know what it’s like
to be a bat, and we don’t know what it’s like to be
computation incarnate.

We can simulate computation (examined below), but can we
inhabit it? Can we find out what it’s like via mental exercise?
Nagel [9]: No.

The question seems incoherent because the machine has no
point of view. However...

26 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

A Special Aspect

We do. AND we are computers.

What’s special about phenomenology vis-a-vis computing in
particular?

1 We are the “first persons” (in the first-person descriptions
of experience).

2 We execute programs.

Some part of our immediate experience IS computational, as an
execution trace or simple grasping of the sequence.

27 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

It’s Personal

The assumption required by computationalism, or any other
view that grants us Turing-computability:

Human cognition understands conditional branches to different
actions, and understands the assignment of values to variable,
inherently.

Computation is accessible to all rational beings (unlike
science). So part of the phenomenology of programming is
computational.

28 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

It’s Also Formal

Computing also has a robust non-phenomenological—even
anti-phenomenological—theoretical foundation (like science).

This human-independent theoretical foundation was formulated
by our rational minds, distilled from our computational
understanding.

We can see it, we can do it, and we can frame it objectively as
a human-independent system.

29 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Tension or Paradox?

What can we take from this unique positioning?

• The phenomenology of programming brackets the science
(computation) to reveal aspects of programs.

• The science (computation) is innate in us, independent of
theory.

• We have formulated an extensive formal theory of the
science (computation).

We make a virtue of necessity and declare this a productive
tension.

30 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Tension or Paradox?

What can we take from this unique positioning?

• The phenomenology of programming brackets the science
(computation) to reveal aspects of programs.

• The science (computation) is innate in us, independent of
theory.

• We have formulated an extensive formal theory of the
science (computation).

We make a virtue of necessity and declare this a productive
tension.

30 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Tension or Paradox?

What can we take from this unique positioning?

• The phenomenology of programming brackets the science
(computation) to reveal aspects of programs.

• The science (computation) is innate in us, independent of
theory.

• We have formulated an extensive formal theory of the
science (computation).

We make a virtue of necessity and declare this a productive
tension.

30 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Tension or Paradox?

What can we take from this unique positioning?

• The phenomenology of programming brackets the science
(computation) to reveal aspects of programs.

• The science (computation) is innate in us, independent of
theory.

• We have formulated an extensive formal theory of the
science (computation).

We make a virtue of necessity and declare this a productive
tension.

30 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Tension or Paradox?

What can we take from this unique positioning?

• The phenomenology of programming brackets the science
(computation) to reveal aspects of programs.

• The science (computation) is innate in us, independent of
theory.

• We have formulated an extensive formal theory of the
science (computation).

We make a virtue of necessity and declare this a productive
tension.

30 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

The Interesting Thing

So we come back around to such questions as:

How is seeking permission like parameter passing?

How can a recursive definition be implemented in an
imperative algorithm?

How can class+count be reconciled with array of
individuals?

How does the spreadsheet invoke formatting?

What’s the bridge? That’s the interesting question.

31 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Future Work

Questions (perhaps meta-questions) to pursue:

• How does the phenomenology of computing augment the
understanding granted by the computational view, in
particular instances or in general?

• How does the embedding of computation into the
apparatus of our own first-person experience affect our
thinking about this?

32 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Summary

That the phenomenology of computing is not computational is
shown by:

1 The nature of problem-solving; we do not see that as
computation.

2 The nature of programs; algorithms are imperative and the
structure of data is flexible.

3 There is no first-computer experience, and we cannot fake
it.

4 The experience of programming is subjective affect
manipulating mechanical reasoning.

5 Yet we are computers, and we have articulated
computation as a formal system.

33 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Summary

That the phenomenology of computing is not computational is
shown by:

1 The nature of problem-solving; we do not see that as
computation.

2 The nature of programs; algorithms are imperative and the
structure of data is flexible.

3 There is no first-computer experience, and we cannot fake
it.

4 The experience of programming is subjective affect
manipulating mechanical reasoning.

5 Yet we are computers, and we have articulated
computation as a formal system.

33 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Summary

That the phenomenology of computing is not computational is
shown by:

1 The nature of problem-solving; we do not see that as
computation.

2 The nature of programs; algorithms are imperative and the
structure of data is flexible.

3 There is no first-computer experience, and we cannot fake
it.

4 The experience of programming is subjective affect
manipulating mechanical reasoning.

5 Yet we are computers, and we have articulated
computation as a formal system.

33 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Summary

That the phenomenology of computing is not computational is
shown by:

1 The nature of problem-solving; we do not see that as
computation.

2 The nature of programs; algorithms are imperative and the
structure of data is flexible.

3 There is no first-computer experience, and we cannot fake
it.

4 The experience of programming is subjective affect
manipulating mechanical reasoning.

5 Yet we are computers, and we have articulated
computation as a formal system.

33 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Summary

That the phenomenology of computing is not computational is
shown by:

1 The nature of problem-solving; we do not see that as
computation.

2 The nature of programs; algorithms are imperative and the
structure of data is flexible.

3 There is no first-computer experience, and we cannot fake
it.

4 The experience of programming is subjective affect
manipulating mechanical reasoning.

5 Yet we are computers, and we have articulated
computation as a formal system.

33 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

Summary

That the phenomenology of computing is not computational is
shown by:

1 The nature of problem-solving; we do not see that as
computation.

2 The nature of programs; algorithms are imperative and the
structure of data is flexible.

3 There is no first-computer experience, and we cannot fake
it.

4 The experience of programming is subjective affect
manipulating mechanical reasoning.

5 Yet we are computers, and we have articulated
computation as a formal system.

33 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

The Affordances

On the mild reading, we suggest, as a matter of interest, more
bracketed attention to computing phenomena (free of
preconceptions).

On a more forceful reading, we call for equal respect for
computing phenomena as they appear.

On the strong reading, we deprecate the computational
approach as harmful.

In any case, we should explore the affordances of
phenomenology as complementary rather than adversarial to
the computational paradigm.

34 / 35



The
Affordances of
Phenomenol-

ogy for
Programming

Robin K. Hill

Programs and
Us

Introduction
to Phe-
nomenology

Phenomena of
Programs as
Problem
Solutions

Phenomena of
Problem
Solutions as
Programs

Unbegging the
Question

Phenomena of
Program
Coding

Phenomena of
Program
Execution

Phenomena of
Programs as
Innate Skill

Conclusion

References

References
Anthony F. Beavers. “Phenomenology and Artificial Intelligence”. In:
Metaphilosophy 33.1/2 (Jan. 2002).

Cogan. Phenomenological Reduction. Date accessed: 20 December 2017. 2017.
url: http://www.iep.utm.edu/phen-red/.

Hubert L. Dreyfus. What Computers Can’t Do. Revised Edition. Harper Colophon
Books, 1979.
Robin K. Hill. “What an Algorithm Is”. In: Philosophy & Technology 29.1 (Mar.
2016). First published online, 11 January 2015, pp. 35–59. issn: 2210-5433. doi:
10.1007/s13347-014-0184-5.
Don Ihde. Consequences of Phenomenology. State Universit of New York Press,
1986.
Jean C. McPhail. “Phenomenology as Philosophy and Method: Applications to Ways
of Doing Special Education”. In: Remedial and Special Education 16.3 (May 1995),
pp. 159–165.
Michelle Montague. “The Content of Perceptual Experience”. In: The Oxford
Handbook of Philosophy of Mind. Ed. by Brian P. McLaughlin. Oxford: Clarendon
Press, 2009.
Dermot Moran. “Husserl’s Transcendental Philosophy and the Critique of
Naturalism”. In: Continental Philosophy Review 41.4 (Dec. 2008), pp. 401–425.

Thomas Nagel. Mortal Questions. Cambridge University Press, 1979.

Oxford Dictionaries. Oxford Living Dictionary.
https://en.oxforddictionaries.com/definition/. 2017.

35 / 35

http://www.iep.utm.edu/phen-red/
http://dx.doi.org/10.1007/s13347-014-0184-5
https://en.oxforddictionaries.com/definition/

	Programs and Us
	Introduction to Phenomenology
	Phenomena of Programs as Problem Solutions
	Phenomena of Problem Solutions as Programs
	Unbegging the Question
	Phenomena of Program Coding
	Phenomena of Program Execution
	Phenomena of Programs as Innate Skill
	Conclusion

