
Middleware’s Presentism:
Asynchrony, Flow, Finance,

and the Enterprise

Michael Castelle
University of Warwick

HaPoP 2018, Oxford, UK
23rd March 2018

Outline

� Data vs. Data-in-motion
� Synchrony vs. asynchrony in the history of

telecommunication
� Historical genealogy of “publish-

subscribe”/multicast message broker
systems in financial services

� Implications of data-in-motion/
asynchrony/multicast qualities for
history/philosophy of programming and
(distributed) computing

Data
(static; finite)

Data-in-Motion
(dynamic; potentially infinite)

Wall Street: a 150 Year
Tradition of Data-in-Motion

� Stock ticker
◦ NYSE (1867)
◦ London Stock Exchange
(1872)

Knorr Cetina and Preda (2007) “The Temporalization of Financial Markets: From Network to Flow”

Paradigms of Telecommunication:
Line Switching
(Indexical/Synchronous)

Paradigms of Telecommunication:
Message Switching / “Store-and-Forward”
(Symbolic/Asynchronous)

“Torn Tape” Relay in the Vietnam War

U.S. Signal Corps mobile communications center

“Torn Tape” Relay in the Vietnam War

U.S. Army Teletype Center in Phu Lam, Vietnam

Message Glut on Wall Street

Message Glut on Wall Street

Mid-1980s Wall Street: the Data Deluge

Micrognosis advertisement, Wall Street & Technology, 1989

Mid-1980s Wall Street: the Data Deluge

Wall Street (1987), 20th Century Fox

Communication in
Early Distributed Systems:
Remote Procedure Call (RPC) (1981)
(synchronous; request/reply)

From Nelson (1981) “Remote Procedure Call” (Xerox PARC Report). A diagram of a
remote procedure call (RPC) from client (“Machine C”) to server (“Machine S”).

Group Communication: The V Kernel
(1984) (synchronous; multicast)

� “An attractive paradigm for a distributed system is that of a free
marketplace. Services are offered by servers, while clients communicate
with servers to negotiate and receive services… In contrast to this free
market model, a single machine operating system acts as a centrally
planned economy. All hardware resources are controlled and allocated by a
benign dictator that provides services to applications…”

Cheriton (1984) “The V Kernel: A Software Base for Distributed
Systems”

Group Communication: The V Kernel
(con’t.) (synchronous; multicast)

Cheriton and Zwaenepoel (1985) “Distributed Process Groups in the
V Kernel”, ACM Transactions on Computer Systems

The Information Bus (TIB) (1986)
(asynchronous, multicast)

Skeen (1992) “An Information Bus Architecture for
Large-Scale, Decision-Support Environments” (Winter
Usenix Conference ’92, San Francisco)

� Seeded by Teknekron Corporation, early
startup incubator (1968, Berkeley)

� 1987: Spun off into independent company

The Information Bus (TIB) (con’t.)
(asynchronous, multicast)

� “This paper concentrates on the problems posed by a “24 / 7“ commercial environment…”

� “To disseminate data objects, data producers generate them, label them with an appropriate
subject, and publish them on the Information Bus… data consumers subscribe to the same
subject. Consumers need not know who produces the objects, and producers need not
know who consumes or processes the objects.”

Oki, Pfluegl, Siegel and Skeen (1993) “The Information Bus®—An
Architecture for Extensible Distributed Systems”, SIGOPS ‘93

TIB / Sun Microsystems on Wall Street
(1988)

Schmerken, “To Build or to Buy?”, Wall Street & Technology, January 1989

IBM: MQSeries (1993-)

� Developed at IBM
Hursley (home of the
CICS transaction
monitor)

� Early 1990s: IBM
partners with Systems
Strategies Inc. (ezBridge
Transact)

� 1993:
◦ Defines Message Queue

Interface (MQI) API
◦ Message Queue Manager

for MVS/ESA released

“An Early Look at Application Considerations Involved with
MQSeries”, December 1994

TIBCO and the Financialization of Everyday Life

� Teknekron Software acquired by Reuters, December 1993 for
$125 million

� 1996: Renamed TIBCO

TIBCO and the Financialization of Everyday Life

� Teknekron Software acquired by Reuters, December 1993 for
$125 million

� 1996: Renamed TIBCO
� Late 1990s: TIB used for Yahoo! Finance backend
� 1999-2001: Partners with Altavista, Forbes, NBC to provide

real-time stock quotes

A Deceptive Portrayal of The Enterprise

Davenport (1998) “Putting the Enterprise into the Enterprise System”, Harvard Business Review

The More Likely Reality of The Enterprise

Linthicum (1999), Enterprise Application Integration

Enterprise Application Integration (EAI)
(late 1990s-early 2000s)
� Heterogeneity is the norm
� Geographical diversity
� Legacy platforms
� Incompatible systems
� Variety of databases

Goal of “message-oriented
middleware” (MOM) is to better
‘glue’ these disparate systems
together through asynchronous
messaging
� IBM MQSeries Integrator
◦ content-based message routing

� TIBCO Active/Enterprise

Linthicum (1999), Enterprise Application Integration

Middleware in Finance at the Turn of the
Century: “Unheralded Yet Vital”

“Technology makes convergence a reality’, Schmerken et. al.,
Bank Systems & Technology, May 2001

Contemporary Message Brokers
in Surveillance and IoT

Kreps (2015) “Putting Kafka to Use”

� Kafka
(LinkedIn, 2011-)
◦ Pageviews, Searches etc.

each “published” to
separate “topics”
(near one billion msgs/day)

Slack (2013-)

� Internet of Things:
MQTT (Message
Queuing Telemetry
Transport)

Dave Locke (2012) “MQTT Connecting the Internet of Things”

A Telecommunications Typology
Synchronous/
Asynchronous*

Unicast/Multicast Finite/Potentially
Infinite
Communications

Telegraph loop Synchronous Broadcast Finite

Telegraph relay Asynchronous Unicast (at each relay) Finite

Stock Ticker Synchronous Broadcast Potentially Infinite

Telephony (line-
switched)

Synchronous Duplex Finite (each phone call has
setup/teardown)

Radio Synchronous Broadcast Potentially Infinite

Ethernet Synchronous Broadcast Finite (fixed-size frame)

IP Asynchronous Unicast Finite (fixed-size
datagram)

RPC Synchronous Unicast Finite

V Kernel Synchronous Multicast Finite

SMTP/Email Async Multicast (via CC) Finite

Message-
oriented
middleware

Async Multicast Potentially Infinite

* Synchrony/asynchrony refers to simultaneity of sending/receiving message and not simultaneity of sender/receiver contact

The Potentially Infinite
in the Philosophy of Time

� McTaggart
“The Unreality of Time” (1908):
◦ A-series: includes designation of a present moment

(‘tensed’)
◦ B-series: events ordered by an earlier-than relationship

(‘tenseless’)
� Facts about B-series are ‘fixed’

� Bergson
◦ Time and Free Will (1899): consciousness characterized by a

temporal ”qualitative multiplicity”, called duration (durée)
◦ Creative Evolution (1907): popular knowledge about time

comparable to “the contrivance of the cinematograph”

Asynchrony and the Potentially Infinite in the
Philosophy of Time

� Bachelard
 The Dialectic of Duration (1936)
◦ “We very soon saw that between this passing of things and the

abstract passing of time there is no synchronism...”
◦ “When we examined this phenomenology in its contexture... we

saw that it always comprises a duality of events and intervals.”

� G.H. Mead
 The Philosophy of the Present (1932)
◦ For Mead, the past “…is expressed in irrevocability”.
◦ Emergent events are how we know time
◦ “The social character of the universe... we find in the situation in

which the novel event is in both the old order and the new which
its advent heralds. Sociality is the capacity of being several things at
once”
� (Semiotic) implication: the more possible interpretations of a sign (e.g. as in

multicast communication), the more social the sign

Data
(static; finite)

Codata
(dynamic; potentially infinite)

David A. Turner (1995) “Elementary Strong Functional Programming”
in Springer Lecture Notes in Computer Science 1022, pp. 1-13.

Mahoney (1989) “Interview with M.D. McIlroy”

Unix: the Codata Operating System (con’t.)

Unix: the Codata Operating System (con’t.)

� Ritchie (1984) “A Stream Input-Output System”
◦ “A stream is a full-duplex connection between a user’s process and

a device or pseudo-device. It consists of several linearly connected
processing modules, and is analogous to a Shell pipeline, except that
data flows in both directions. The modules in a stream
communicate almost exclusively by passing messages to their
neighbors.”

Against Set Theory
� Mac Lane (1986)

Mathematics: Form and Function
◦ Attempt to build all of mathematics out of set theory leads to its own

“Set-theoretic Platonism”

◦ “..all the variants of Platonism shatter on the actual practice of mathematics.”

� Hagino (1987)
Category Theoretic Approach to Data Types
◦ “..in set theory it is not easy to see either the duality between injective and

surjective functions or the duality between cartesian products and disjoint sums. It is
in category theory that these dualities come out clearly… [o]ur slogan is: category
theory can provide a better and more natural understanding of mathematical objects than
set theory”.

� Barwise and Moss (1996)
Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena
◦ “The universe of sets may or may not be a suitable tool for modeling some

particular phenomena we find in the world. Some other mathematical
universe may well be better in some given instance.”

Databases vs. Codatabases

� Coalgebras (Fox, 2001)
◦ “The usual algebraic operations all have the same form—two

objects are combined to form a third. Addition, multiplication,
scalar multiplication, concatenation, composition, amalgamation,
fusion - these are the tools of elementary algebra, and “abstract”
algebra generalizes these notions. But this ignores an entire class of
operations that are just as fundamental: Factorization, partition,
decomposition, scattering, fission—the operations that take a single
object and break it into parts. These are the coalgebraic operations.”

Thomas F. Fox (2001) “Everybody Knows what a Coalgebra is”.

Codata in Functional Programming Research (con’t.)

� Codatatypes in the ML Language (Hagino, 1989)

� Inductive vs. coinductive types (Vene, 2000)
◦ “..inductive types (like natural numbers or lists).. provide very

simple means for construction of data structures, but in order to
use these values one often needs recursion.
◦ “..Coinductive types (like streams, possibly-infinite lists) are dual to

inductive ones. They come together with basic operations to
destruct the values, however, their construction often involves
recursion.”

Hagino, “Codatatypes in ML”, Journal of Symbolic Computation (1989) vol. 8, pp. 629-650.
Vene (2000) “Categorical Programming with Inductive and Coinductive Types”.

Codata and Total Functions in Idris
(Brady, 2017)

◦ “Idris will consider a function total if:
� It has clauses that cover all possible well-typed inputs
� All recursive calls converge on a base case”

◦ “The Inf type marks a value as potentially
infinite, rather than guaranteeing that the value
is infinite.”

Edwin Brady, Type-Driven Development in Idris (2017)

Conclusions

◦ Financial services as prominent site for history
and philosophy of computing
◦ Case for phenomenological approach to study of

distributed systems
◦ Fundamental communication paradigms

(synchronous/asynchronous, unicast/multicast)
recur in layered sociotechnical contexts (optical,
telegraphic, packet-switched, service-oriented)
◦ History and philosophy of ‘Big Data’ must be

accompanied by its dual, the history of ‘Big
Codata’

Thanks!

� Charles Babbage Institute
� Computer History Museum
� Nicholson Center for British

Studies, University of Chicago
� New York Stock Exchange

