
Theorising	Data:		A	History	of	Abstract	Data	Types	and	their	Specification	
	

John	V	Tucker	
Department	of	Computer	Science	

Swansea	University	
	
In	the	past	decade	data	has	transformed	from	an	invaluable	working	term,	used	in	
computing	and	in	the	sciences,1	to	become	a	concept	whose	meaning,	scope	and	
significance	is	expanding	and	changing	many	other	human	domains	and	enterprises		–	
thanks,	not	least,	to	the	ubiquitous	digital	data	we	generate	in	everyday	life	being	tractable.	
The	software	that	holds	together	modern	life	collects	data	intentionally	and	unintentionally.	
Software	is	ideal	for	monitoring	the	behavior	of	people	and	objects.	The	appetite	for	data	in	
the	sciences,	commercial	and	public	services,	and	government	raises	diverse	and	
challenging	questions		–		technical,	economic,	political,	legal,	social,	and	personal		–		that	
require	diverse	theoretical	foundations.	Data	belongs	to	distinct	realms	of	human	activity.	
Theorising	data	is	work	for	many	disciplines	and	minds.2	
	
In	Computer	Science,	questions	and	speculations	about	data	are	not	new.3		In	theorising	
data	we	could	start	by	considering	what	data	means	in	programming	and	software	
development.		Computer	Science	has	answers	to	the	fundamental	questions:	What	are	
data?	What	are	digital	data?		The	answers	are	contained	in	the	user-centred	programing	
concept	of	abstract	data	type.		Today,	abstract	data	types	are	easy	to	understand	and	teach;	
they	can	be	formally	modelled	using	many	sorted	abstract	algebras;	they	also	possess	a	
deep	mathematical	theory,	elegant	programming	constructs,	and	useable	formal	methods	
for	large	scale	software	development.		
	
In	this	paper	I	describe	the	origins	of	the	modern	conception	and	algebraic	theory	of	
abstract	data	types.	The	theory	is	based	on	specifications	that	axiomatise	the	operations	on	
data	using	equations,	and	are	equipped	with	the	operational	semantics	of	term	rewriting;	
the	many	sorted	algebras	that	satisfy	the	equations	are	models	of	possible	implementations	
of	the	specifications.	The	development	of	the	concept	and	theory	is	complicated	as	it	blends	
independent	research	programmes	in	(i)	programming	languages;	(ii)	programming	
methodology,	and	(iii)	logical	and	algebraic	semantic	methods.	The	period	I	have	chosen	is	
1966	to	1985.	I	begin	with	Aad	van	Wijngaarden	(1916-1987)	on	axiomatising	numerical	
data	types;	I	end	with	the	complete	classification	theory	of	abstract	data	types	by	Jan	
Bergstra	and	myself	using	computability	theory,	and	with	the	spread	of	algebraic	methods.	I	
will	reflect	on	the	technological	and	scientific	motivations	and	interplay	between	some	of	
the	actors	of	research	programmes	(i)-(iii).	
	

																																																								
1	By	sciences	I	mean	physical,	biological	and	social	sciences	where	empirical	data	are	fundamental.	
2	We	recognise	the	intuitive	idea	of	data	to	be	present	wherever	there	are	measurements	and	
computation	(e.g.,	in	ancient	astronomy	and	accounting).	The	term	data	appears	in	the	17th	Century.	
The	present	transformation	is	timelined	in	https://www.forbes.com/sites/gilpress/2013/05/28/a-
very-short-history-of-data-science.		
3	For	example,	theoretical	concerns	about	natural	languages,	and	data	versus	information	versus	
knowledge,	arise	in	thinking	about	AI	in	the	1940s.	



Programming	data	types.	I	will	consider	the	programming	methodology	literature,	as	
represented	by	IFIP	WG	2.3.	E	W	Dijkstra’s	(1930-2002)	interest	in	specification	started	with	
his	writing	programs	from	specifications	of	un-built	machines	at	the	Mathematical	Centre,	
Amsterdam	(now	CWI)	in	1950s.	The	emphasis	on	structured	programming,	specification,	
and	reasoning	was	influential	in	making	software	development	a	subject	for	theoretical	
analysis,	one	that	looked	to	logic	and	algebra	for	ideas	and	techniques.	The	treatment	of	
data	in	C	A	R	Hoare’s	axiomatic	approach	to	programming	language	definition	of	1969,	and	
data	refinement	of	1972,	helped	untie	data	types	from	code.	David	Parnas’	work	on	
software	engineering	in	Philips	Apeldoorn	in	1971	led	to	his	ideas	on	information	hiding,	the	
fundamental	role	of	interfaces,	and	documentation,	which	ultimately	freed	data	from	
implementation	via	notions	of	module.	
	
An	important	milestone	is	Stephen	Zilles’	independent	formal	study	of	data	types	in	1974-
77;	he	knew	about	axioms	and	presentations	and	the	new	Birkoff-Lipson	paper	on	
heterogenous	(=	many	sorted)	universal	algebras	of	1970.	Combined	with	Barbara	Liskov’s	
introduction	of	modules	as	a	collection	of	procedures	with	information	hiding,	in	Venus	
(1972)	and	the	CLU	language	(1976),	a	programmer’s	way	of	completely	modelling	user-
centred	data	types	became	available.	At	the	same	time,	there	was	a	study	of	the	
representation	independent	specification	of	data	in	J	V	Guttag’s	PhD	Thesis	in	1975.		These	
developments	were	inspiring	to	designers	of	new	programming	and	specification	languages;	
for	example,	Bjarne	Stroustrup’s	experiments	with	abstract	data	types	for	C	(1982-4)	which	
led	to	C++.	
	
Mathematical	theory	of	data	types.	But	the	theory	of	abstract	data	types	took	its	
mathematical	form	through	the	work	of	the	ADJ	Group:	Jim	Thatcher,	Eric	Wagner,	Jesse	B	
Wright	and	Calvin	Elgot	at	IBM	Yorktown	Heights,	and	Joseph	Goguen	(1941-2006),	who	
wrote	many	basic	papers	on	initial	algebras,	equational	specifications,	parameteristion,	
errors,	etc.,	starting	1975.	Their	work	on	data	was	a	component	of	a	larger	scale	approach	
to	semantics	based	upon	category	theory.4	
	
The	ADJ	work	was	mathematically	clear,	rigorous	and	correct	(unlike	much	other	theory).	It	
was	the	basis	for	Jan	Bergstra	and	I	to	work	on	classifying	the	scope	and	limits	of	algebraic	
specifications	(based	on	different	forms	of	equation,	hidden	functions	and	sorts,	initial	and	
final	semantics	and	complete	term	rewriting	systems).	The	work	was	scientific,	resonating	
with	Birkhoff’s	1936	papers	on	varieties,	and	Mal’cev’s	theory	of	computable,	semi-
computable	and	cosemi-computable	algebras	which	could	characterize	digital	data.		
	
Conclusion.	The	20	year	period	1966-85	was	hugely	productive	for	programming.	Abstract	
methods	emerged	that	met	the	needs	of	users,	and	of	software	developers	(e.g.,	portability	
and	maintenance).	For	data	there	emerged	a	theory	that	worked:	it	could	model	the	data	in	
any	user’s	world,	and	so	be	of	long	term	technological	and	scientific	use.	
	

																																																								
4	The	roots	of	which	can	be	found	partially	in	the	early	work	of	Peter	Landin	on	general	questions	
about	programming	languages;	and	was	notably	developed	by	many	(e.g.,	Rod	Burstall	and	Joe	
Goguen	with	their	idea	of	institutions	of	the	late	1970s).		
	


