
What can a 1980s BASIC programming textbook teach us today?
Extended Abstract

Martin Lester
University of Oxford

martin.lester@cs.ox.ac.uk

ABSTRACT
Elementary Basic, published in 1982, is an introductory program-
ming text with a novel central conceit, namely that the fictional
19th century detective Sherlock Holmes used a computer to help
solve mysteries. It is also novel among similar books of its time for
its focus on program design. In other regards, such as its use of the
language BASIC, it is representative of its time.

Over 35 years after it was written, I think it is worth looking
back at it to see to what is still relevant today and what would
be done differently. We may even learn something about teaching
programming today. Of particular interest is the degree to which
the use of BASIC influenced the content of the book.

1 BACKGROUND
The early 1980s were a revolutionary period in the development of
home computing and computer programming. For the first time,
commercially produced home computers were available for sale
to the general public at reasonable prices. Most such computers
came equipped with an interpreter for the programming language
BASIC that was loaded immediately from ROM when the computer
was turned on. The ease with which ordinary people could access
a programming environment helped to drive interest in learning
programming and consequently the production of materials to
support this: newsagents routinely sold computer magazines that
would include articles about programming in BASIC; books giving
tutorials on how to program were also available.

2 ELEMENTARY BASIC
One such book was Elementary Basic: Learning to Program your
Computer in Basic with Sherlock Holmes [3], published in 1982. The
central conceit of the book is that Sherlock Holmes used Charles
Babbage’s Analytical Engine to assist in solving various mysteries.
The authors have supposedly discovered unpublished manuscripts
detailing Watson’s discussions with Holmes on these ventures into
programming and translated them into BASIC for the benefit of
the modern reader. (The cover of the book seems to claim that
Babbage’s Analytical Engine came into use around the time the
first Holmes story was written, when in fact it was never built,
but given that Holmes is a fictional character, the authors may be
forgiven for suggesting he interacted with a non-existent machine.)

By the time the book was written and published, the market
for introductory programming books was already quite crowded.
In the postscript, the authors question “whether the world really
needed yet another text on programming”, but they believe that:

• “programming is difficult. . . [but] the basis of programming
stems from a few elementary ideas”;

HaPoP 2018, March 2018, Oxford, UK
2018.

• the dialogue format of the book is an “easy to follow and
enjoyable” exposition of those ideas;

• and “the best method to teach programming is through prob-
lems”.

That is, the book was an attempt to teach introductory program-
ming rather than an attempt to teach a specific language. This
distinction may have been unclear to a potential buyer or reader
and remains so today: introductory books are necessarily usually
tied to a single language, which typically features prominently in
the title. As a more modern example, consider Objects First with
Java [2], which similarly serves as a problem-based introductory
programming text, but does not distinguish itself from a language
introduction through its title.

Most chapters of the book follow a set format:

• After some setup, Holmes discusses with Watson an aspect
of a mystery that could be solved easily using a computer.

• Holmes presents pseudo-code for solving the problem, fol-
lowed by a BASIC implementation.

• Watson asks questions about new ideas or confusing parts
of the program, which Holmes answers.

• The chapter concludes with an “out of character” summary
of any new language features introduced.

3 OBSERVATIONS
I now outline some interesting observations about this book, which
I will expand upon in my talk.

3.1 Concept
The setting of the book, or perhaps just the fact that one can con-
sider a programming text as having a setting, is arguably its most
distinctive feature. Certainly, I found myself wanting to read it on
this basis, despite having no particular interest in Sherlock Holmes
and little interest in BASIC in the last 15–20 years. Surprisingly,
as the book’s acknowledgements reveal, several people other than
the credited authors played substantial roles in the development of
the book’s text, in particular in writing the pastiches of Sherlock
Holmes stories.

The use of dialogues as a means of exposition has a long history
in Western science and philosophy, for example in the works of
Plato and Galileo, although the style of the dialogues between
Holmes andWatson is more like that between amaster and a scholar.
An advantage of this format is that it allows errors and difficulties
to be raised naturally by the character of the scholar; a conventional
narrative attempting to discuss points of misunderstanding risks
seeming contrived or condescending.



HaPoP 2018, March 2018, Oxford, UK Martin Lester

3.2 Learning by Solving Problems
The idea of introducing programming through a series of concrete
problems was certainly, as the authors claimed, uncommon at the
time. Contemporary books were typically structured around the
introduction of new language features, with short programs illus-
trating their use [1, 4].

Although many of the problems in the book are motivated by
the need to solve a mysterious murder or theft, the actual programs
largely end up being somewhat conventional. Examples include
calculating the date and month of the nth day of the year, pretty-
printing a coroner’s report and searching a flat file database of
criminals for a matching record.

One exception is the first program in the book, which purports to
solve a logic puzzle of the kind one might find in a puzzle magazine,
with the aim of identifying a murderer. I was intrigued by how
a relatively complex problem such as this might be written and
introduced in the book. Upon looking at the program, the answer
became clear. Rather than being a general-purpose solver, the pro-
gram hardcoded all the data and inference rules, tying it completely
to a specific problem instance.

When one considers all the difficulties that would be involved
in writing a general-purpose solver in BASIC, it is easy to see why
this was a necessary simplification. For example, the absence of any
kind of pointers or references makes it difficult to construct any
interesting data structure, other than by allocating a large array
and effectively managing the memory manually.

The verbosity of BASIC flow control also makes the programs
much longer and harder to follow than would be necessary in other
languages. The majority of the example programs could be written
in less than half the space in C or Java and would perhaps take only
a few lines in ML or Haskell.

Combining these factors, perhaps one can see why this and other
books of its time contain few algorithms of any significance. Sort-
ing may be a programming cliche, but I was surprised not to see
it discussed at all in the 250 pages of Elementary Basic. Overall,
the mostly pedestrian examples and lack of algorithmic develop-
ment felt like a missed opportunity, given the book’s unusual and
promising concept.

3.3 Program Development
The credited authors of the book, Henry Ledgard and Andrew
Singer, are well-qualified as computer scientists, and this shows
through in their discussion of the design and correctness of pro-
grams. Sadly, BASIC offers few facilities to support this and in some
places actively hinders it.

Types. The idea of the distinction between types as enforced by
the language and as intended by the programmer is raised early
in the book. Types are given a more detailed discussion later on,
but given the paucity of BASIC’s type system, they are treated
largely as something for the programmer to check when writing
code, rather than as something for the computer to check for the
programmer.

Top-Down Design. The book consistently advocates top-down
design as a style of programming. The choice of design technique
is not as significant as the fact that it is discussed throughout and

great length, which seems to be a rarity for an introductory book
of the time.

Code Hygiene. The text contains extensive reminders to use
meaningful variable names where possible, to add comments and to
use indentation meaningfully. Each of these prescriptions remains
good and frequently ignored advice today. Unfortunately, they
could all be thwarted by certain BASIC implementations, as the
authors acknowledge.

4 CONCLUSIONS
Elementary Basic had some novel ideas that would be worth revis-
iting today. It would be interesting to see a modern introductory
programming book (or perhaps a series of videos) presented as a
series of dialogues. If done well, it could be very appealing to a
young audience. Computer scientists thinking about writing pro-
gramming books for a broad audience should seriously consider
following this book’s example by finding a skilled writer who can
help to make the book interesting!

Learning to program by solving problems is pedagogically sound.
Looking at the complexity of problems in more recent books follow-
ing this idea, I argue we are getting better at writing programs, but
this may be because we have better languages, rather than because
we are better at teaching how to use them, although I hope our
teaching has improved too. (Note that we have better languages
partly because we have more powerful computers that can support
them.)

In the UK, in some of the more theoretically-oriented computer
science degree programmes, such as those in Oxford and Cam-
bridge, undergraduates are told that it does not particularly matter
what language they learn to program in, provided they learn the
underlying principles. While there is some truth in this claim, I
doubt it holds when the expressivity of the language becomes an
impediment to writing interesting programs, as I believe this book
demonstrates is the case in BASIC.

Concerning the broader question of whether everyone in the
future will be a programmer, we sometimes look back nostalgi-
cally at the 1980s as a time of great computer literacy, with large
numbers of schoolchildren capable of programming to some degree.
Certainly, the ease with which one could access a BASIC interpreter
and introductory programming materials was a major contributing
factor to this. But today, anyone who wishes can easily download
(for example) a Python interpreter and textbook, or access an inter-
active online course. Furthermore, looking at the technical content
of this and other 1980s programming texts, I see little evidence of
algorithmic sophistication. I argue that most “programmers” of the
1980s were relatively superficial in their abilities and most of what
most of them achieved could be replicated today (perhaps using
a database, spreadsheet or image editor) without “programming”.
Contrary to most predictions, I therefore suggest that while the
number of technically skilled people will increase in the future,
the number of programmers will decrease, or our understanding of
what constitutes “programming” will change significantly.

REFERENCES
[1] 1984. Choosing and Using Your Home Computer: An Introductory Course. Imprint

unknown.



What can a 1980s BASIC programming textbook teach us today? HaPoP 2018, March 2018, Oxford, UK

[2] David J. Barnes. 2016. Objects First with Java: A Practical Introduction Using BlueJ,
Global Edition. Pearson Education Limited.

[3] Henry F Ledgard and Andrew Singer. 1982. Elementary Basic , as Chronicled by
John H. Watson (Learning to Program Your Computer in Basic with Sherlock Holmes).
Random House.

[4] Brian Reffin Smith. 1982. Guide to Computer Programming (Usborne Computers &
Electronics). Usborne Publishing Ltd.


	Abstract
	1 Background
	2 Elementary Basic
	3 Observations
	3.1 Concept
	3.2 Learning by Solving Problems
	3.3 Program Development

	4 Conclusions
	References

