
Middleware’s Presentism: Asynchrony, Flow, Finance, and the Enterprise
HaPoP 2018 (Oxford, UK) Submission

Michael Castelle
Assistant Professor, University of Warwick

M.Castelle.1@warwick.ac.uk +44 7506919298

[NOTE: A variant of this abstract was previously submitted for the Fall 2017 History and Philosophy of
Computing (HaPoC) conference in Brno, but I was unable to attend due to my starting a new position at the
same time as the conference. I had a short email discussion with HaPoP co-organizer Tomas Petricek and he
gave me permission to submit an updated/edited version for HaPoP 2018.]

 This paper will examine the primary intellectual controversies in the early development
of distributed computing systems, which isolated the distinctive features of nascent inter-
process and inter-computer communication (e.g. synchronous vs. asynchronous (Liskov,
1979); procedure-oriented vs. message-oriented (Lauer & Needham, 1978); constraints on
temporal and causal ordering (Lamport, 1978; Cheriton & Skeen, 1993)), and argue that these
debates, interwoven with their eventual implementation and commercialization for financial
services and manufacturing applications (and beyond), constitute a form of pragmatic,
materialist, applied philosophy on topics of communication, temporality, and causality.
Further, by specifically examining the various systems and distributed programming
environments developed at Xerox PARC, Stanford and Cambridge in the late 1970s through the
late 1980s—including Remote Procedure Call (Nelson, 1981), the V Kernel (Cheriton, 1984),
ISIS (Birman et. al., 1985), and The Information Bus (Skeen, 1992)—I will show how the
distinct communicative styles engendered by this research initially came to be valued both by
Wall Street brokerage firms increasingly overwhelmed by a surfeit of heterogeneous,
incompatible digital data feeds and by a variety of organizations with ossifying ‘stovepipe’
legacy infrastructure. I will in turn suggest that these systems, which emphasize asynchronous
messaging and broadcast communication, bear a conceptually (and arguably ontologically)
dual relationship to systems programming techniques which (deliberately or unconsciously)
strove to deny qualities of (and concerns for) processuality, temporality, and the material
unpredictability of failure.

 Inspired by these techniques, the industry which subsequently emerged across the
1990s—that of message-oriented middleware (Horwitt, 1993; Banavar et. al., 1999)—was in
part predicated on the increasing interest of traders in harnessing and differentially attending
to real-time flows of securities information and news (Ranadive, 1999), but also in part
predicated on the related need of many large organizations to bridge a new generation of
client/server architectures and desktop workstations with legacy mainframe systems, batch-
oriented applications, and real-time systems (Schulte, 1996). The distinctive publish/subscribe
communication pattern which emerged in these message-oriented systems (Cheriton &
Zwaenepoel, 1985; Oki et. al., 1993) was one in which conceptually centralized (if logically
distributed) flows of messages would be ‘published’, for which ‘subscribers’ (e.g. to subjects like
‘*.ibm.news.reuters’) would be asynchronously notified when events of interest (e.g. Reuters
headlines about IBM) occurred. This publish/subscribe paradigm would re-emerge in different
asynchronous/distributed contexts over the following decades (Eugster et. al., 2003), from
“push media” (Kelly & Wolf, 1997) to the Internet of Things (Stanford-Clark, 2002).

 As mentioned above, I will argue that these technologies and techniques which prioritize
data-in-motion can be seen to be in a dualistic relationship with data traditions of a ‘set-
theoretic Platonism’ (Mac Lane, 1986) such as the relational database model (Codd, 1970),
which tend towards a static world devoid of asynchronous events. In this dichotomy between
the atemporal data of the archive and the highly temporal data streams of messaging
middleware—what functional programming researchers would call codata (Turner, 2004)—we
can see fascinating parallels to long-running philosophical debates between a deictic and a
‘tenseless’ view of time inspired by McTaggart (1921). The contemporary message-oriented
middleware underlying our largest digital media platforms, then, can be seen as unconsciously
in the tradition of G.H. Mead: a “world of events” for which sociality “is a process continually
passing into the future” and in which “objects exist in nature as the patterns of our actions”
(Mead, 1932, p. 190).

Bibliography

Banavar, G., Chandra, T., Strom, R., & Sturman, D. (1999). A Case for Message Oriented

Middleware. In P. Jayanti (Ed.), Distributed Computing (pp. 1–17). Springer
Berlin Heidelberg.

Birman, K., El Abbadi, A., Dietrich, W. C., Joseph, T., & Raeuchle, T. (1985, January).
An Overview of the ISIS Project. IEEE Distributed Processing Technical
Committee Newsletter.

Cheriton, D. R. (1984). The V Kernel: A Software Base for Distributed Systems. IEEE
Softw., 1(2), 19–42.

Cheriton, D. R., & Skeen, D. (1993). Understanding the Limitations of Causally and
Totally Ordered Communication. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles (pp. 44–57). New York, NY, USA:
ACM.

Cheriton, D. R., & Zwaenepoel, W. (1985). Distributed Process Groups in the V Kernel.
ACM Transactions on Computer Systems, 3(2), 77–107.

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6), 377–387.

Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003). The Many Faces
of Publish/Subscribe. Presented at the ACM Computing Surveys.

Horwitt, E. (1993). Vendors get caught up in middle (ware). Computerworld.
Kelly, K., & Wolf, G. (1997, March). PUSH! Retrieved June 1, 2017, from

https://www.wired.com/1997/03/ff-push/
Lamport, L. (1978). Time, Clocks, and the Ordering of Events in a Distributed System.

Commun. ACM, 21(7), 558–565.
Lauer, H. C., & Needham, R. M. (1978). On the Duality of Operating Systems Structures.

In Proc. Second International Symposium on Operating Systems, IR1A.
Liskov, B. (1979). Primitives for Distributed Computing. In Proceedings of the Seventh

ACM Symposium on Operating Systems Principles (pp. 33–42). New York, NY,
USA: ACM.

Mac Lane, S. (1986). Mathematics Form and Function. Springer-Verlag.

McTaggart, J. M. E. (1921). The nature of existence. (C. D. (Charlie D. Broad, Ed.).
Cambridge, Eng. : University Press.

Mead, G. H. (1932). The Philosophy of the Present. Open Court.
Nelson, B. (1981, May). Remote Procedure Call. Palo Alto Research Center.
Oki, B., Pfuegl, M., Siegel, A., & Skeen, D. (1993). The Information Bus® — An

Architecture for Extensible Distributed Systems. ACM SIGOPS Operating
Systems Review, 27(5), 58–68.

Ranadive, V. (1999). The Power of Now. Mc-Graw Hill.
Schulte, R. (1996). Batch is Dead. Long Live Batch. (Gartner Research Note No. SPA-

200-159). Gartner.
Skeen, D. (1992). An Information Bus Architecture for Large-Scale, Decision-Support

Environments. Proceedings of the Winter USENIX Conference, 183–195.
Stanford-Clark, A. (2002). Integrating monitoring and telemetry devices as part of

enterprise information resources. WebSphere MQ Development, IBM Software
Group.

Turner, D. A. (2004). Total Functional Programming. Journal of Universal Computer
Science, 10(7), 751–768.

